

Auftraggeber: Länderarbeitsgemeinschaft Wasser LAWA (Projekt-Nr. O 10.09)

Auftragnehmer: Bayerisches Landesamt für Umwelt

Laufzeit: Dezember 2009 bis August 2011

Bewertung von Seen mit
Makrophyten & Phytobenthos
gemäß EG-WRRL –
Anpassung des Verfahrens für
natürliche und künstliche
Gewässer sowie
Unterstützung der
Interkalibrierung

Endbericht

August 2011

Dr. Jochen Schaumburg Christine Schranz Dr. Doris Stelzer

Auftraggeber Länderarbeitsgemeinschaft Wasser LAWA. Projekt-Nr. O 10.09

Auftragnehmer Bayerisches Landesamt für Umwelt

ProjektleitungDr. Jochen Schaumburg, Bayer. Landesamt für UmweltKoordinationDipl.-Biol. Christine Schranz, Bayer. Landesamt für Umwelt

Makrophyten Dr. Doris Stelzer, Hohenbrunn-Riemerling

Inhaltsverzeichnis

1	Vor	bemerk	ung	5					
2	Einl	eitung		7					
3	Mal	Makrophyten							
	3.1	Aufgal	benstellung	9					
	3.2	Dateng	grundlage	9					
		3.2.1	Übersicht über die Neudaten	9					
		3.2.2	Informationen zur Plausibilität	10					
	3.3	Bewer	tung der Gewässerstellen nach dem bestehenden Verfahren	12					
		3.3.1	AK(s) - karbonatische geschichtete Wasserkörper der Alpen und des Alpenvorlandes	12					
		3.3.2	MKp - karbonatische polymiktische Wasserkörper der Ökoregion Mittelgebirge	12					
		3.3.3	TKg10 - stabil geschichtete karbonatische Wasserkörper des Tieflandes mit relativ großem EZG	13					
		3.3.4	TKg13 - stabil geschichtete karbonatische Wasserkörper des Tieflandes mit relativ kleinem EZG	13					
		3.3.5	TKp - polymiktische karbonatreiche Wasserkörper des Tieflandes	14					
	3.4	Gründ	e für unplausible Bewertungen	15					
	3.5		rbeitung des Bewertungsverfahrens für künstliche und erheblich veränderte wässer	16					
		3.5.1	Sicherungskriterien	17					
		3.5.2	Überarbeitung des Zusatzkriteriums "Mittlere UMG"	17					
		3.5.3	Überarbeitung des Zusatzkriteriums "Massenbestände"	19					
		3.5.4	Ökoregion (Vor-)Alpen	20					
		3.5.5	Ökoregion Mittelgebirge	21					
		3.5.6	Ökoregion norddeutsches Tiefland	22					
		3.5.7	Empfehlungen zur Bewertung von Talsperren	25					
	3.6	Bewer	tung der Gewässer nach überarbeitetem Verfahren	27					
		3.6.1	Veränderungen in den Bewertungsergebnissen durch die Überarbeitung	27					
		3.6.2	Überprüfung der Plausibilitätsrückmeldungen	27					
4	Diat	tomeen		29					
	4 1	Aufgal	benstellung	29					

	4.2		dische Vorgaben für die Entnahme von Diatomeenproben im Litoral von Se eutschen Tiefland	een im 29
		4.2.1	Ufer ohne geschlossene Röhrichte	30
		4.2.2	Ufer mit geschlossenen dichten Röhrichten (Eu-Phragmitetum, Typha-Bestände)	33
5	Inte	rkalibr	ierung	36
6	Han	dlungs	anleitung	37
	6.1	Vorbe	merkung	37
	6.2		gung der benötigten Anzahl repräsentativer Ufertransekte und die Auswahl ür die Bewertung eines See-Wasserkörpers	deren 38
		6.2.1	Ermittlung der Stellenzahl	38
		6.2.2	Festlegen der Lage der Transekte	39
	6.3	Prober	nahme und Ermittlung der Makrophyten & Phytobenthos-Biozönose	40
		6.3.1	Makrophyten	40
		6.3.2	Diatomeen	48
	6.4	Bestin	nmung des Gewässertyps	58
	6.5	Bewer	tung	62
		6.5.1	Makrophyten	62
		6.5.2	Diatomeen	84
	6.6	Gesam	ntbewertung von Litoralstellen in Seen mit Makrophyten & Phytobenthos	116
		6.6.1	Bewertung von Litoralstellen	116
		6.6.2	Bewertung von See-Wasserkörpern	139
	6.7	Anmei	rkungen zur Interpretation der Bewertungsergebnisse	140
7	Zusa	ammen	fassung	143
8	Lite	ratur		144
9	Anh	ang - B	ewertungsergebnisse	149
Ał	bildu	ıngsver	zeichnis	157
Ta	bellei	nverzeio	chnis	158

1 Vorbemerkung

Über den hier vorliegenden Bericht hinausgehende Erläuterungen zur Entwicklung und Fortschreibung des Bewertungsverfahrens finden sich in folgenden Veröffentlichungen:

SCHAUMBURG, J., SCHMEDTJE, U., SCHRANZ, C., KÖPF, B., SCHNEIDER, S., MEILINGER, P., STELZER, D., HOFMANN, G., GUTOWSKI, A. & FOERSTER, J. (2004): Erarbeitung eines ökologischen Bewertungsverfahrens für Fließgewässer und Seen im Teilbereich Makrophyten und Phytobenthos zur Umsetzung der EU-Wasserrahmenrichtlinie. – Bayerisches Landesamt für Wasserwirtschaft, Abschlußbericht an das Bundesministerium für Bildung und Forschung (FKZ 0330033) und die Länderarbeitsgemeinschaft Wasser (Projekt Nr. O 11.03), 635 S., München.

SCHAUMBURG, J., SCHMEDTJE, U., SCHRANZ, C., KÖPF, B., SCHNEIDER, S., MEILINGER, P., STELZER, D., HOFMANN, G., GUTOWSKI, A., FOERSTER, J. (2005): Bewertungsverfahren Makrophyten & Phytobenthos, Fließgewässer- und Seenbewertung in Deutschland nach EGWRRL. – Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft, Heft 1/05: 245 S., München.

SCHAUMBURG, J., SCHRANZ, C. & STELZER, D. & HOFMANN, G. (2007b): Bundesweiter Test: Bewertungsverfahren "Makrophyten und Phytobenthos" in Seen zur Umsetzung der WRRL. – Bayerisches Landesamt für Umwelt, Endbericht (LAWA-Projekt Nr. O4.04), München: 129 S.

SCHAUMBURG, J., SCHRANZ, C., STELZER, D, VOGEL, A.: (2008): Bewertung stehender Gewässer mit Makrophyten und Phytobenthos gemäß EG.WRRL, Teil b): Bewertung künstlicher und stark veränderter natürlichen Seen sowie Talsperren mit Ableitung des ökologischen Potentials. Endbericht (LAWA-Projekt Nr. O2.06), Bayerisches Landesamt für Umwelt, Augsburg.

SCHAUMBURG, J., SCHRANZ, C., MEILINGER, P., STELZER, D, VOGEL, A.:(2011): Bewertung von Seen mit Makrophyten & Phytobenthos gemäß EG-WRRL – Anpassung des Verfahrens aufgrund erster Ergebnisse und Erfahrungen aus den Bundesländern. Endbericht (LAWA-Projekt Nr. O8.08), Bayerisches Landesamt für Umwelt, Augsburg.

Diese und weiter Publikationen zum Thema stehen auf der Internetseite des LfU http://www.lfu.bayern.de/wasser/forschung_und_projekte/phylib_deutsch/index.htm zum download bereit.

Das hier vorgestellte Bewertungsverfahren wurde anhand einer begrenzten Anzahl von Probestellen im Rahmen eines Untersuchungsprogramms in den Jahren 2000 bis 2003 erstellt und in einer zweiten Phase im Rahmen eines bundesweiten Praxistests (2004) weiterentwickelt. Dabei wurden Organismen in Indikations-Gruppen eingeteilt. Die entstandenen Listen wurden durch Literaturwissen ergänzt. Diese Artenlisten können Lücken oder Fehler aufweisen, die sich erst im Zuge der breiten Anwendung erkennen lassen. Eine eventuell notwendige Anpassung der Einteilungen muss unbedingt und ausschließlich an einer zentralen Stelle in Zusammenarbeit mit Spezialisten erfolgen. Idealerweise sollten hierfür die Bearbeiter des Projektes, in Zusammenarbeit mit dem Bayerischen Landesamt für Umwelt, herangezogen werden.

2 Einleitung

Ziel der europäischen Wasserrahmenrichtlinie (EUROPÄISCHE UNION 2000) ist die Erreichung des guten ökologischen Zustandes aller Oberflächengewässer. Die Bewertung soll typspezifisch und leitbildorientiert anhand von vier biologischen Qualitätskomponenten erfolgen, unter anderem mit Makrophyten & Phytobenthos. Für Seen mit einer Seefläche größer 0,5 km² wurde von MATHES et al. (2002) eine auf biogeographischen, geochemischen und hydromorphologischen Kriterien basierende Typisierung der natürlichen Seen in Deutschland vorgenommen und für die Biokomponente Makrophyten & Phytobenthos in natürlichen Seen ein Bewertungsverfahren entwickelt, das bundesweit in der Praxis erprobt wurde (siehe SCHAUMBURG et al. 2004, SCHAUMBURG et al. 2007a, b, STELZER 2003). Bezugspunkt der Bewertung des jeweiligen Gewässertyps sind die Referenzbedingungen bzw. die Referenzbiozönosen, die in anthropogen weitgehend unbeeinflussten Gewässern anzutreffen sind, die dem sehr guten ökologischen Zustand entsprechen. Die Bewertung erfolgt durch Quantifizierung der Abweichung der vorliegenden Biozönose von der zu erwartenden Referenzbiozönose anhand der Parameter taxonomische Zusammensetzung und Abundanz.

In Deutschland sind über 300 künstliche Seen (AWB = artificial water bodies) und Talsperren, welche als erheblich veränderte Gewässer gelten (HMWB = heavily modified water bodies) zu berücksichtigen. Diese Gewässer können z.T. aufgrund anhaltender Nutzung und Bewirtschaftung oder veränderter Strukturmerkmale die strengen Umweltziele für natürliche Gewässer nicht erreichen. Daher wird für diese Gewässer analog zu den natürlichen Seen das sogenannte "ökologische Potential" bewertet.

Im höchsten ökologischen Potential entsprechen die biologischen Komponenten, soweit unter den erfolgten hydromorphologischen Veränderungen möglich, dem Referenzzustand eines natürlichen Gewässers. Die physikalisch-chemischen Kenngrößen sollen vollständig oder nahezu vollständig den Referenzbedingungen des am ehesten vergleichbaren natürlichen Gewässertyps entsprechen. Das höchste ökologische Potential beschreibt dabei nicht den Natürlichkeitsgrad des Gewässers, sondern orientiert sich an dessen Sanierungspotential, das alle Maßnahmen umfasst, die ohne signifikante Einschränkung der Nutzung möglich sind (IRMER & RECHENBERG 2004). Ziel ist das Erreichen des guten ökologischen Potentials, das vom höchsten ökologischen Potential in den biologischen Komponenten geringfügig abweicht.

Das von SCHAUMBURG et al. (2008) entwickelte Bewertungsverfahren für künstliche und erheblich veränderte Stillgewässer wurde inzwischen angewendet und getestet. Die dabei auftretenden Ergebnisse, Probleme, Fragen, aber auch Anregungen für die Verbesserung des Systems sowie Einschätzungen zur Plausibilität der Bewertungsergebnisse wurden in der Zwischenzeit beim Bayerischen Landesamt für Umwelt (LFU) gesammelt. Die vorliegende Arbeit hat die Anpassung des Verfahrens aufgrund dieser ersten Ergebnisse und Erfahrungen bei der Gewässerbewertung in den Wasserbehörden der Bundesländer zum Ziel.

Aufgrund der Entwicklungshistorie werden auch die zum Teil als natürlich eingestuften Altrheine und einige natürliche Mittelgebirgsseen in den Bearbeitungen der AWB- und HMWB behandelt.

Bei der Berechnung durch das Bewertungstool Phylib werden für diese Gewässer aber korrekterweise Ökologische Zustandsklassen berechnet und nicht das Ökologische Potential.

3 Makrophyten

3.1 Aufgabenstellung

Für die Überarbeitung des Bewertungsverfahrens wurden von den Bundesländern in den vergangenen Jahren verfahrenskonform erhobene Daten zur Verfügung gestellt.

Mit den neu erhobenen Daten werden die Klassengrenzen für die Bewertung überprüft sowie die Qualitätskriterien für eine gesicherte Bewertung hinterfragt. Die Indikatorenlisten zur Einstufung der Makrophytentaxa in ökologische Artengruppen werden geprüft und auf Grundlage der neuen Befunde überarbeitet. In Bezug auf die Bewertung von Talsperren und Speichern soll die Frage geklärt werden in wieweit die Höhe der nutzungsbedingten Stauspiegelschwankungen einen Einfluss auf die Bewertbarkeit hat.

3.2 Datengrundlage

3.2.1 Übersicht über die Neudaten

Die im Folgenden beschriebenen Auswertungen basieren auf einer vom Bayerischen Landesamt für Umwelt zusammengestellten Access-Datenbank, die Makrophytenuntersuchungen zu allen Ökoregionen und Makrophytentypen zur Verfügung stellt. Wie bei den bisherigen Auswertungen wurden die Daten auf Plausibilität und Eignung geprüft. Diesmal waren sämtliche Neudaten mit dem PHYLIB-Verfahren kompatibel (z. B. hinsichtlich Mengenangaben und Tiefenstufen). Probestellen ohne Typangabe konnten problemlos anhand der Kategorien Ökoregion, Karbonatgehalt, Schichtungsverhalten und Größe des Einzugsgebiets den bisher bestehenden Makrophytentypen zugeordnet werden; bei künstlichen Gewässern dem jeweils ähnlichsten Typ (vgl. SCHAUMBURG et al. 2008).

Bei 73 Stellen (15 Gewässern) fehlte die Angabe zur unteren Verbreitungsgrenze der Makrophyten (UMG). Soweit möglich wurde diese Angabe aus mitgelieferten Berichten bzw. den angaben zur Tiefenverbreitung der Makrophyten ergänzt.

Seit der letzten Bearbeitung des Bewertungsverfahrens (MEILINGER 2010, SCHAUMBURG et al. 2011) kamen qualifizierte Makrophytendaten zu 257 untersuchten Stellen aus 51 Seen in 5 Bundesländern hinzu, die in den Jahren 2008 und 2009 erhoben wurden (Tabelle 1). Eine Übersicht über alle bewerteten Befunde geben Tabelle 73 bis Tabelle 77 im Anhang.

SN

ST

gesamt 20/2

BL	AK(s)	МКр	TKg10	TKg13	ТКр	gesamt
BY	20/2	8/1				28/3
NI			12/4	6/3	8/4	26/11
NW				38/8	13/3	51/11

29/6

7/1

48/11

Tabelle 1: Übersicht über die qualifizierten Neudaten: Probestellen/Seen je Bundesland (BL) und Makrophytentyp

33/7

57/7

134/25

Für die Überarbeitung des Bewertungsverfahrens für Talsperren wurden sowohl die Neudaten als auch ältere Daten herangezogen. Insgesamt waren zu 154 Transekten in 22 Talsperren und Speichern neben den Makrophytendaten auch Informationen zu den Wasserstandsschwankungen sowie zur Gewässertrophie vorhanden.

4/1

22/4

47/12

66/14

86/12 257/51

3.2.2 Informationen zur Plausibilität

8/1

Die Berichte über die Anwendung des PHLIB-Verfahrens von CORING et al. (2010) sowie IDUS (2009) wurden ausgewertet. Darüber hinaus lag eine zusammenfassende Datei zur Plausibilitätsbewertung eines Teils der Neudaten vor. Darin enthalten waren Angaben zu 24 untersuchten Transekten aus Niedersachsen, 50 aus Sachsen und 72 aus Sachsen-Anhalt. Diese Rückmeldungen bezogen sich ausschließlich auf die Tieflandtypen TKg10, Tkg13 und TKp.

Tabelle 2 zeigt in der Übersicht, welche Angaben zur Plausibilität von den Vertretern der Bundesländer zur Verfügung gestellt wurden. Pro Makrophytentyp ist angegeben, für wie viele Probestellen bzw. Untersuchungen plausibilisierte Befunde vorliegen (gesamt), wie viele davon gesichert bzw. nicht gesichert bewertet werden konnten (gesichert, ungesichert, siehe auch Abbildung 1).

Des Weiteren enthält Tabelle 2 die Information wie viele Befunde als plausibel oder nicht plausibel (nur gesicherte) eingestuft wurden (Bewertung plausibel, Bewertung nicht plausibel). Unplausible Probestellen wurden wenn möglich nach zu guter oder zu schlechter Bewertung unterschieden (Bewertung zu gut, Bewertung zu schlecht, unklar).

Tabelle 2: Übersicht über die Angaben zur Plausibilität (Anzahl Probestellen/Untersuchungen)

Makrophytentyp	gesamt	gesichert	ungesichert	Bewertung plausibel	Bewertung nicht plausibel	unklar	Bewertung zu gut	Bewertung zu schlecht
ТКр	30	21	9	19	2	О	2	o
TKg10	23	16	7	3	13	4	7	2
TKg13	93	70	23	41	29	0	1	28
gesamt	146	107	39	63	44	4	10	30

Abbildung 1 zeigt den Anteil von plausibel/nicht plausibel eingestuften bzw. ungesicherten Probestellen. Am besten wurden die Bewertungen des Typs TKp eingestuft. 63% aller Befunde und 90 % der gesicherten Befunde wurden als plausibel angesehen. Bei Typ TKg13 wurden 44% aller Bewertungsergebnisse und 59% der gesicherten Ergebnisse als plausibel beurteilt. Weniger gut schnitten die Bewertungen des Typs TKg10 ab. Lediglich 13 % aller Ergebnisse und 19% der gesicherten Ergebnisse wurden als plausibel beurteilt.

Insgesamt beträgt der Anteil der als plausibel eingestuften Bewertungen an den gesicherten Probestellen 59%.

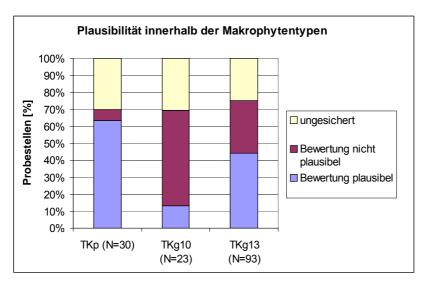


Abbildung 1: Plausibilitätsangaben zu den Probestellen in %

Abbildung 2 gibt den Anteil zu guter bzw. zu schlechter Bewertungen an den als unplausibel eingestuften Bewertungsergebnissen an. Während beim Typ TKg13 "zu schlechte" Bewertungen deutlich überwiegen, sind bei den Typen TKg10 und TKp die "zu guten" Ergebnisse in der Überzahl. Aufgrund der geringen Fallzahl kann diese Aufstellung lediglich Hinweise liefern.

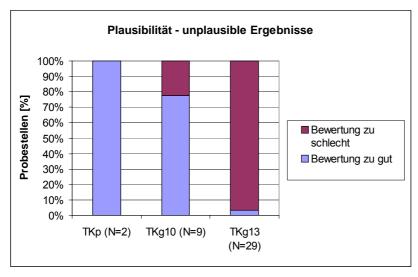


Abbildung 2: Abweichungen unplausibler Befunde (zu gut - zu schlecht) in %

3.3 Bewertung der Gewässerstellen nach dem bestehenden Verfahren

Die Bewertung der künstlichen und erheblich veränderten Gewässer erfolgte gemäß SCHAUMBURG et al. (2008) bzw. SCHAUMBURG et al. (2007a). Die Indikatorlisten wurden der Überarbeitung von SCHAUMBURG et al (2011) übernommen.

Die Ergebnisse der Bewertungen der künstlichen bzw. erheblich veränderten Gewässer nach bestehenden Bewertungsverfahren sind dem Anhang (Kapitel 9) zu entnehmen. Nachfolgend werden die Ergebnisse für die untersuchten Gewässertypen erläutert und insbesondere unplausibel erscheinende Bewertungen exemplarisch diskutiert.

3.3.1 AK(s) - karbonatische geschichtete Wasserkörper der Alpen und des Alpenvorlandes

Die Bewertungsergebnisse der Stellen, die dem Typ AK(s) zugeordnet werden sind in Tabelle 73 zu finden. Von den 20 untersuchten Stellen dieses Typs ließen 18 eine gesicherte Bewertung zu. Das Zusatzkriterium der Unteren Vegetationsgrenze wurde nicht angewendet, da es sich bei den untersuchten Seen um Talsperren handelt.

Für die beiden mesotrophen Seen wurde eine Bewertung mit dem guten Ökologischen Potential (II) erwartet. Sowohl der Forggensee (BY) als auch der Schongauer Lechsee (BY) weisen nur geringe Mengen oligotraphenter Characeen-Arten auf. Die submerse Vegetation wird dominiert von zahlreichen euryöken Arten wie *Potamogeton perfoliatus* und Störzeigern wie *Elodea nuttallii*. Für beide Gewässer ergibt sich damit eine mittlere Bewertung die dem mäßigen Ökologischen Potential (III) entspricht.

3.3.2 MKp - karbonatische polymiktische Wasserkörper der Ökoregion Mittelgebirge

Für diesen Gewässertyp lagen Daten zu 8 Probestellen des Igelsbachsees (BY) vor (Tabelle 74). Drei der Probestellen können nicht gesichert bewertet werden, da die nötige Gesamtquantität nicht erreicht wurde. Das Gewässer weist zwar relativ geringe Pegelschwankungen von 2,2 m auf, die mittlere Sichttiefe liegt mit 2,1 m allerdings darunter, wodurch für submerse Makrophyten eher ungünstige Wachstumsbedingungen vorherrschen.

Der Mittelwert der Potentialklassen der gesicherten Bewertungsergebnisse von 3,8 erscheint für das eutrophe Gewässer plausibel. Das Zusatzkriterium der Unteren Vegetationsgrenze wurde nicht angewendet.

3.3.3 TKg10 - stabil geschichtete karbonatische Wasserkörper des Tieflandes mit relativ großem EZG

Für diesen Typ lagen zu 47 Gewässerstellen neue Daten vor. Hiervon konnten 34 gesichert bewertet werden (Tabelle 75). Der Große See bei Northeim (NI) sowie der Baggersee Schladen (NI) erfüllen wegen der zum Zeitpunkt der Kartierung noch laufenden Auskiesung nicht die Vorrausetzungen für eine gesicherte Bewertung. Die neun übrigen ungesicherten Stellen haben nicht die nötige Mindestquantität an submersen Makrophyten aufgewiesen. Von den vier im Baggersee Stolzenau (NI) untersuchten Transekten weisen zwei einen sehr geringen und eines keinen submersen Bewuchs auf. In Hinblick auf die fachgutachterliche Einschätzung des Gewässers erscheint die Annahme von Makrophytenverödung und damit die Zuordnung zu dem schlechten Ökologischen Potential (V) angebracht (vgl. CORING et al. 2010).

Das Zusatzkriterium der Unteren Vegetationsgrenze wurde mit Ausnahme des Speicher Witznitz (SN) bei allen Bewertungen angewendet (vgl. IDUS 2009).

Bei dem Koldinger Kiessee (NI), dem Gr. See bei Northeim (NI), vier der fünf Transekte des Speicher Witznitz (NI) und einer Stelle im Speicher Friedersdorf (Lohsa 1, SN) erfolgt aufgrund des Zusatzkriteriums "Massenvorkommen" von *Elodea canadensis/nuttallii* eine Abwertung von dem unbefriedigendem Ökologischen Potential (IV) auf das schlechte ökologische Potential (V). Diese Korrektur erscheint in Hinblick auf den Gesamtzustand der Gewässer (Vgl. CORING et al. 2010) als etwas zu streng.

Gemäß der Plausibilitätsrückmeldung (vgl. Kapitel 3.2.2) aus Sachsen-Anhalt fällt die Bewertung des Niegripper Sees mit dem mäßigen Ökologischen Potential (III) "um eine Klasse zu gut" aus. Das Gewässer enthält fast ausschließlich ökologische indifferente "B-Arten". Die mittlere Vegetationsgrenze beträgt nur 1,7 m. Eine Abwertung durch das Zusatzkriterium "Mittlere Vegetationsgrenze" wird in diesem Fall nicht vorgenommen, da der Referenzindex (RI) nicht größer sondern gleich null ist und damit die Voraussetzungen für die Anwendung des Zusatzkriteriums knapp verfehlt werden.

3.3.4 TKg13 - stabil geschichtete karbonatische Wasserkörper des Tieflandes mit relativ kleinem EZG

Von den 134 untersuchten Stellen konnten 123 gesichert bewertet werden (Tabelle 76). An neun Transekten wurden keine oder zu wenige submerse Pflanzen gefunden, an zwei Stellen war der Anteil an nicht eingestuften Arten zu hoch. Für keinen der Seen wird Makrophytenverödung angenommen. Der Große Bornhorster See (NI) erreicht zwar mit einer Oberfläche von 47 ha nicht die für das Verfahren angegebene Mindestgröße von 50 ha wird aber aufgrund der geringen Unterschreitung mitbewertet.

In der Plausibilitätsrückmeldung wird die Bewertung von 14 der 15 Transekte des oligo-mesotrophen Goitzschesees (ST) mit dem mäßigen ökologischen Potential (III) bzw. an einer Stelle mit dem unbefriedigenden Ökologischen Potential (IV) als "um eine Klasse zu schlecht" bezeichnet. Das Gewässer entstand als Tagebaurestsee und wurde von 1999 bis 2002 mit Muldewasser geflutet. Im Jahr 2004 kam es zu einer Massenentwicklung von *Elodea nuttallii* (RÖNICKE et al. 2006).

Seit 2006 gehen diese Dominanzbestände allmählich vor allem zu Gunsten von Characeen zurück (BECK & MELZER 2010). In den vorliegenden Kartierungsdaten von 2009 ist *Elodea nuttalli* mit bis zu 41% der Gesamtquantität an einzelnen Transekten noch immer sehr präsent und hat einen starken Einfluss auf das Bewertungsergebnis. Es ist davon auszugehen, dass sich in dem jungen Gewässer erst noch ein stabiler Makrophytenbestand etablieren muss, bevor die Vegetation zur aussagekräftigen Bewertung des ökologischen Potentials herangezogen werden kann.

Als "eine Klasse zu gut" wird hingegen die Bewertung mit dem mäßigen ökologischen Potential (III) der einzigen gesicherten Stelle des Großen Bornhorster Sees (NI) von CORING et al. (2010) beschrieben; es bestehe vielmehr eine "Tendenz zu unbefriedigenden Zuständen". Die Bewertung der Stelle beruht auf dem alleinigen Vorkommen von *Eleocharis acicularis* mit Häufigkeitsklasse 5 (massenhaft), das nur bis in eine Tiefe von 0,2 m reicht. Aufgrund der Einstufung der Art in Artengruppe "B" ergibt sich ein Referenzindex von 0 wodurch das Zusatzkriterium "Mittlere Vegetationsgrenze" nicht zur Anwendung kommt.

Alle sechs Transekte des oligotrophen Runstädter Sees (ST) werden mit dem guten ökologischen Potential (II) bewertet. In Anbetracht der Tatsache, dass das Gewässer sechs verschiedene Characeenarten (unter anderem die sehr seltenen Arten *Chara hispida, Chara intermedia* und *Chara polyacantha*) aufweist und deshalb als "Referenzgewässer für Characeen" eingestuft ist erscheint diese Bewertung zu streng. Auch die mittlere Vegetationsgrenze von 9,2 m zeigt intakte Verhältnisse an. Das Bewertungsergebnis ließe sich deutlich verbessern, wenn die im Gewässer stark vertretene und bislang als "B"-Art (=indifferent) eingestufte *Chara vulgaris* zumindest in einer Tiefe unterhalb von 2 m als "A"-Art (=Gütezeiger) umgestuft würde.

Ebenfalls zu streng erscheinen die Bewertungsergebnisse des Salzgittersees (NI). Von den beiden untersuchten Transekten erreicht eines das mäßige ökologische Potential (III), das andere das unbefriedigende (IV), was im Mittel eine unbefriedigende Gesamtbewertung ergibt. In diesem Fall erscheint die Anzahl der Untersuchungsstellen für eine sichere Gesamtbewertung des Gewässers nicht ausreichend. Gemäß SCHAUMBURG et al. (2007a) ist auch bei kleinen Gewässern von bis zu 2,0 km² eine Mindestanzahl von 4 Transekten notwendig.

Auch die Ergebnisse des oligotrophen Tagebausee Köckern (ST) wurden als "um eine Klasse zu schlecht" zu beurteilt. Drei der sechs untersuchten Transekte erreichen das gute ökologische Potential (II), drei das mäßige (III). Ähnlich wie im oben beschriebenen Runstädter See ließe sich die Bewertung durch Veränderung der Einstufung von *Chara vulgaris* in Tiefen unterhalb von 2 m erheblich verbessern.

3.3.5 TKp - polymiktische karbonatreiche Wasserkörper des Tieflandes

Von den 47 untersuchten Stellen konnten 40 gesichert bewertet werden (Tabelle 77). An 5 Transekten wurden keine oder zu wenige submerse Pflanzen gefunden. An zwei Stellen wurden ausschließlich die Arten *Nuphar lutea* und *Nympaea alba* gefunden. Makrophytenverödung aufgrund von Eutrophierung wird für den Seeburger See (NI) angenommen, dessen Zustand von CORING et al. (2010) als "schlecht" beschrieben wird.

Das Zusatzkriterium der Unteren Vegetationsgrenze wird bei der Thülsfelder Talsperre (NI) wegen der starken Wasserstansschwankungen nicht angewendet. Die Bewertung mit dem

mäßigen ökologischen Potential (III) steht im Widerspruch zu der Einschätzung von CORING et al. (2010), wonach aufgrund der "regelmäßig in der Thülsfelder Talsperre auftretenden massiven Blaualgenblüten sowie des hypertrophen Gesamtcharakters des Gewässers [...] eine Bewertung des ökologischen Zustandes als "schlecht" aus Sicht der Bearbeiter gerechtfertigt" sei. Bei der Kartierung wurden sehr artenarme Makrophytengesellschaften nachgewiesen, wobei die Flora hauptsächlich aus einer ausgeprägten Schwimmblattvegetation mit *Polygonum amphibium* bestand. In diesem Fall kann wie bei einer Dominanz der Schwimmblattpflanzen *Nuphar lutea* oder *Nymphaea alba* von Makrophytenverödung durch Eutrophierung ausgegangen werden.

Die Bewertung des Alfsees (NI) mit dem mäßigen ökologischen Potential (III) fällt nach CORING et al. (2010) "um zwei Klassen zu gut" aus. Gemäß den von SCHAUMBURG et al. (2011) aktualisierten Arteinstufungen wird inzwischen eines der beiden Transekte mit unbefriedigend (IV) bewertet. Durch die Anwendung des Kriteriums "untere Makrophytengrenze" auf Stellen mit negativem Referenzindex ließe sich für den Alfsee, dessen mittlere Vegetationsgrenze nur 1,7 m erreicht, eine noch strengere Bewertung erzielen.

3.4 Gründe für unplausible Bewertungen

Bei den Auswertungen der qualifizierten Neudaten, den bearbeiteten Berichten sowie den Plausibilitätsrückmeldungen der Ländervertreter wurden im Wesentlichen die folgenden Gründe für unplausible Bewertungsergebnisse festgestellt:

- Anwendung des Verfahrens auf zu junge Gewässer In sehr jungen Gewässern ist die Florenentwicklung noch nicht stabil. Die Vegetation solcher Gewässer wird in erster Linie vom zufälligen Angebot an Samen oder Sprossteilen bestimmt. Erst nach fortschreitender Sukzession über einen längeren Zeitraum kann sich eine stabile Makrophytenvegetation etablieren, die den ökologischen Zustand des Gewässers widerspiegelt und eine gesicherte Bewertung ermöglicht (vgl. Kapitel 3.3.4 Goitzschesee).
- Anwendung des Verfahrens auf zu kleine Gewässer Das Bewertungsverfahren wurde entsprechend den Anforderungen der EG-Wasserrahmenrichtlinie für Seen mit einer Oberfläche von mindestens 50 ha entwickelt und ist nicht auf die Bedingungen in kleineren bewässern abgestimmt.
- Gesamtbewertung basiert auf zu geringer Stellenzahl Nach SCHAUMBURG et al. (2007a) kann die für die Bewertung notewendige Mindestzahl an Untersuchungsstellen anhand von Seeoberfläche/Uferentwicklung sowie Ufermorphologie/Ufernutzung abgeschätzt werden. Je größer und komplexer ein Gewässer ist, desto mehr Transekte müssen untersucht werden. Um eine sinnvolle Gesamtbewertung von Gewässern vorzunehmen ist bei homogenen Gewässern von bis zu 2,0 km² eine Mindestanzahl von 4 Transekten notwendig. Bei extrem großen Seen kann eine Beprobung von bis zu 50 Stellen notwendig sein.
- **Probleme mit dem Begriff "Makrophytenverödung"** Wie bereits bei SCHAUMBURG et al. (2011) erläutert, bestehen bei vielen Anwendern Unklarheiten über die Definition des Kriteriums Makrophytenverödung im PHYLIB-Bewertungsverfahren. So wird oftmals nicht beachtet, dass sowohl bei geringen Gesamtquantitäten als auch bei hohen Anteilen von *Nuphar*

lutea oder *Nymphaea alba* Makrophytenverödung im Sinne der PHYLIB-Methode vorliegen kann und die betroffenen Stellen nach entsprechender Absicherung mit dem gesicherten schlechten Zustand bzw. Potential (V) zu bewerten sind.

Wie das Beispiel der Thülsfelder Talsperre (NI) zeigt, sollten auch Gewässer an denen andere Schwimmblattpflanzen wie z.B. *Persicaria amphibia* Dominanzbestände ausbilden auf Makrophytenverödung überprüft werden (vgl. Kapitel 3.3.5).

- Unplausible Bewertungsergebnisse an Talsperren Die Bewertung von Talsperren erfolgte bislang nur unter Vorbehalt. Die vorgeschriebene Überprüfung der Plausibilität der Ergebnisse ergab in einigen Fällen, dass auch in Talsperren ohne erkennbare stoffliche Belastungen die submerse Vegetation dominiert wird von euryöken Arten wie *Potamogeton perfoliatus* und Störzeigern wie *Elodea nuttallii*. Für die beiden mesotrophen Gewässer Forggensee (BY) und Schongauer Lechsee (BY) ergibt sich damit eine mittlere Bewertung die dem mäßigen Ökologischen Potential (III) entspricht was in Hinblick auf die guten Werte für Wasserchemie und Phytoplankton als zu streng erscheint (vgl. Kapitel 3.3.2 und 3.5.7).
- **Zu schlechte Bewertung Characeenreicher Gewässer** Insbesondere Gewässer mit ausgedehnten Beständen von Chara vulgaris unterhalb von 2 m Tiefe werden oftmals zu streng Bewertet (vgl. Kapitel 3.3.4 Runstädter Sees und Tagebausee Köckern).
- Beschränkung des Zusatzkriteriums "Mittlere Vegetationsgrenze" auf "RI > 0" Transekte, die aufgrund der Artenzusammensetzung einen mäßigen Zustand (III) erreichen, werden auch dann nicht weiter abgewertet, wenn die untere Vegetationsgrenze extrem gering ist und auf starke Eutrophierung des Gewässers hinweist (vgl. 3.3.3 Niegripper See). Eine zusätzliche Abwertung dieser Stellen wäre aber wünschenswert.
- Abwertung aufgrund des Zusatzkriteriums "Massenvorkommen" Im Gegensatz zu dem oben beschriebenen Zusatzkriterium "Mittlere Vegetationsgrenze" wird die Korrektur aufgrund von Massenvorkommen ausgewählter Arten auch an Stellen mit negativem Referenzindex (RI) vorgenommen. Einzelne Transekte können also von dem unbefriedigenden Ökologischen Potential (IV) auf das schlechte ökologische Potential (V) abgewertet werden. Diese Korrektur stellte sich in einigen Fällen als überflüssig heraus (vgl. 3.3.3 Koldinger Kiessee, Speicher Witznitz und Speicher Friedersdorf). Mit einer Einschränkung dieses Zusatzkriteriums auf Stellen mit einem RI > -50 ließe sich dieses Problem beheben.

3.5 Überarbeitung des Bewertungsverfahrens für künstliche und erheblich veränderte Stillgewässer

Im Folgenden sind die durchgeführten Anpassungen der bearbeiteten Makrophytentypen beschrieben. Im Datenbestand waren Gewässer der Typen AK(s), MKp, TKp, TKg10 und TKg13 vertreten. Die durchgeführten Änderungen sollen in erster Linie die unter Kapitel 3.4 beschriebenen Probleme beheben.

Die Überarbeitete Liste der Indikatorarten ist in Tabelle 17 zu finden.

3.5.1 Sicherungskriterien

Da ein Teil der unplausiblen Bewertungsergebnisse auf Anwendungsprobleme des bestehenden Verfahrens beruht, werden nachfolgend die Voraussetzungen für gesicherte Bewertungsergebnisse sowie für Makrophytenverödung aufgeführt:

- Die **Gewässeroberfläche** des untersuchten Gewässers muss mindestens 50 ha (0,5 km²) betragen.
- In Kiesgruben/Baggerseen muss die Auskiesung abschlossen sein.
- Das Gewässer muss ein **Mindestalter** von 15 Jahren aufweisen.
- Die **sommerlichen Stauspiegelschwankungen** dürfen nicht mehr als 3 m betragen (vgl. Kapitel 3.5.7)
- **Anzahl und Auswahl der Untersuchungstransekte** erfüllen die von SCHAUMBURG et al. (2007a) beschriebenen Voraussetzungen.
- Der **Anteil der eingestuften Arten** an der Gesamtquantität der submersen Arten muss mehr als 75% erreichen.
- Die **Gesamtquantität der submersen Arten** muss mindestens 55 (Typ AK(s), MKg, TKg10, TKg13 und MTS) bzw. 35 (Typ AKp, MKp und TKp) betragen.
- Der Anteil von *Nuphar lutea*, *Nymphaea alba* und *Persicaria amphibia* an der Gesamtquantität der submersen Arten muss unter 80% liegen.

Wird eines der letzten beiden Kriterien nicht erfüllt, so muss geprüft werden, ob eine Verödung der submersen Makrophytenpopulation vorliegt. Im Fall einer begründeten **Makrophytenverödung** (siehe auch Tabelle 16) ist die Stelle mit dem schlechten ökologischen Potential (V) zu bewerten. Die Bewertung gilt in diesem Fall als **gesichert**.

Eine zuverlässige Gewässerbewertung ist nur dann möglich, wenn **mehr als die Hälfte der untersuchten Transekt**e nach den oben genannten Kriterien gesichert bewertbar sind. Gewässer die diese Bedingung nicht erfüllen, sollten nicht mit der Teilkomponente Makrophyten bewertet werden.

3.5.2 Überarbeitung des Zusatzkriteriums "Mittlere UMG"

Das Zusatzkriterium der Unteren Makrophytenverbreitungsgrenze (UMG) wurde als Ergebnis des Bundesweiten Praxistests des PHYLIB-Bewertungsverfahrens (SCHAUMBURG et al. 2007b) entwickelt, um Seen deren Vegetation nur geringe Tiefen erreicht strenger bewerten zu können als solche mit tief reichenden Makrophytenbewuchs. Als Grundlage für die Bewertungsgrenzen wurden sowohl untersuchte Referenzstellen, als auch die Angaben von SUCCOW & KOPP (1985) sowie MAUERSBERGER & MAUERSBERGER (1996) herangezogen, in denen Grenzwerte für die Makrophyten-Tiefenverbreitung zur Secchitiefe bzw. Trophie in Beziehung gesetzt werden.

Das Zusatzkriterium kommt nur zur Anwendung wenn der Referenzindex (RI) größer 0 ist, der See eine typspezifische Mindesttiefe aufweist und hohe Wasserstandsschwankungen ausgeschlossen sind. Sind die Voraussetzungen erfüllt und erreicht die UMG die typspezifischen

Grenzwerte nicht, so erfolgt eine Korrektur des RI um bis zu 50 (Tabelle 3), was einer Abstufung um eine Ökologische Zustands- bzw. Potentialklasse entspricht.

Die Beschränkung auf Stellen mit einem RI größer null stellt sicher, dass Stellen mit relativ guter Artenzusammensetzung und schlechter Vegetationsgrenze als mäßig bewertet werden und damit Handlungsbedarf im Sinne der WRRL ausgelöst wird. Im derzeitigen Verfahren hat dieses Zusatzkriterium jedoch auch zur Folge, dass es insbesondere in der Ökoregion Norddeutsches Tiefland zu einer "Häufung der Bewertungsergebnisse in der ökologischen Zustandsklasse 3" kommt, von denen viele für nicht plausibel gehalten werden (HAMANN 2010, vgl. auch Kapitel 3.4).

Auf der Grundlage der vorliegenden Berichte und Daten wurde das Zusatzkriterium für das Norddeutsche Tiefland grundlegend überarbeitet (Tabelle 3):

- Bei Stellen mit UMG knapp unterhalb der von Referenzstellen und guter Makrophytenvegetation (RI > 0) erfolgt nur noch eine geringe Korrektur von -10
- Bei Stellen mit UMG deutlich unterhalb der von Referenzstellen und guter Makrophytenvegetation (RI > 0) erfolgt eine Korrektur um knapp eine halbe Zustands-/ bzw. Potentialklasse (-20)
- Bei Stellen mit sehr geringer UMG (< 2,5 m) erfolgt unabhängig vom RI eine Korrektur um eine Zustands- bzw. Potentialklasse (-50)

Stellen mit gut entwickelter, lebensraumtypischer Unterwasservegetation werden nun weniger stark abgewertet wenn die mittlere UMG des Gewässers nicht ganz den Wert der Referenzstellen erreicht. Die Zustands- bzw. Potentialklasse wird also nur noch verändert wenn der RI nahe der Klassengrenze zur nächst schlechteren Klasse liegt.

Transekte in Seen mit sehr geringer UMG, die auf starke Eutrophierung hinweist, werden hingegen unabhängig vom RI um eine Zustands- bzw. Potentialklasse abgewertet.

Tabelle 3: Übersicht über	die Abwertungsbedingungen	des Referenzindex durch die UMG

		alt		neu			
Makrophytentyp	Bedingung Mittlere UMC		Abwertung RI	Bedingung	Mittlere UMG	Abwertung RI	
TKg10	RI > 0	< 5m	-50	RI > 0	zw. 4 m und 6 m	-10	
				RI > 0	zw. 2,5 m und 4 m	-20	
				-	< 2,5 m	-50	
TKg13	RI > 0	zw. 5 m und 8m	-20	RI > 0	zw. 5 m und 8 m	-10	
	RI > 0 < 5m		-50	RI > 0 zw. 2,5 m und 5 m		-20	
				-	< 2,5 m	-50	
RI > 0 und Tmax ≥ 3m		< 3m		RI > 0 und Tmax > UMG	zw. 2,5 m und 4 m	-10	
	Tmax ≥ 3m			Tmax ≥ 2,5 m	< 2,5 m	-50	

3.5.3 Überarbeitung des Zusatzkriteriums "Massenbestände"

Im Gegensatz zum oben behandelten Zusatzkriterium unterliegt die Abwertung aufgrund von "Massenbeständen" ausgewählter Arten bislang keinen Einschränkungen und wird auch an Stellen mit negativem Referenzindex (RI) vorgenommen. Kommen an einer Stelle Dominanzbestände typspezifisch definierter Arten mit mehr als 80% Anteil an der Gesamtquantität vor, so erfolgt eine Korrektur des RI um -50, was einer Abstufung um eine Ökologische Zustands- bzw. Potentialklasse entspricht. Einzelne Transekte können also von dem unbefriedigenden Ökologischen Potential (IV) auf das schlechte ökologische Potential (V) abgewertet werden, was in dem vorliegenden Datenbestand zu unplausiblen Ergebnissen führt (siehe Kapitel 3.4).

Laut WRRL werden Wasserkörper, "bei denen die Werte für die biologischen Qualitätskomponenten des betreffenden Oberflächengewässertyps erhebliche Veränderungen aufweisen und große Teile der Biozönosen, die normalerweise bei Abwesenheit störender Einflüsse mit dem betreffenden Oberflächengewässertyp einhergehen, fehlen, als schlecht eingestuft". Da es sich bei den Arten deren Massenbestände zur Abwertung führen jedoch um Taxa handelt, die in den jeweiligen Typen durchaus an Referenzstellen auftreten können, erscheint die Korrektur auf das schlechte Potential (V) nicht gerechtfertigt.

Um solche Fehlbewertungen in Zukunft zu vermeiden, sollte das Zusatzkriterium "Massenvorkommen" nur noch auf Stellen mit einem RI > -50 angewendet werden (siehe Kapitel 6.5.1).

3.5.4 Ökoregion (Vor-)Alpen

$\label{eq:continuous} \textbf{Typ AK}(s) \textbf{ - Stellen karbonatischer geschichteter Wasserk\"{o}rper der Alpen und des Alpenvorlandes}$

Aus dieser Ökoregion lagen nur zu zwei Gewässern (Forggensee (BY) und Schongauer Lechsee (BY)) qualifizierte Neudaten vor. Es traten keine noch nicht eingestuften Arten auf. Für die der Art *Myosotis scorpioides* wurde die Tiefenverbreitung auf die Stufen 1-2 m und 2-4 m erweitert. Weitere Änderungen der Indikatorliste sind Tabelle 17 zu entnehmen.

Wie unter 3.5.3 erläutert wurde die Anwendung des Zusatzkriteriums "Massenbestände" auf Probestellen mit RI > -50 beschränkt.

Wasserkörper vom Typ AK(s) werden nach der Überarbeitung der Klassengrenzen und Zusatzkriterien gemäß Tabelle 4 bewertet.

Tabelle 4: Zuordnung der Indexwerte zu den Ökologischen Potentialklassen (ÖZ) - Typ AK(s)

ÖZ	RI (umgerechnet)
1	1,00 - 0,76
2	<0,76 - 0,51
3	<0,51 - 0,26
4	<0,26 - 0,01
5	0,01 - 0,00 oder Makrophytenverödung

- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze zwischen 5 m und 8 m verringert sich der RI um 20
- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze von weniger als 5 m verringert sich der RI um 50
- bei einem RI > -50 und Dominanzbeständen von *Elodea canadensis/ nuttallii, Myriophyllum spicatum* oder *Najas marina subsp. intermedia* verringert sich der RI um 50
- wird der RI durch die Anwendung der Kriterien <-100, wird er auf -100 gesetzt

3.5.5 Ökoregion Mittelgebirge

Typ MKp - Stellen karbonatischer polymiktischer Wasserkörper der Ökoregion Mittelgebirge

Aus der Ökoregion Mittelgebirge lagen nur zu einem Gewässer Neudaten vor. Im Igelsbachsee (BY) wurden keine noch nicht eingestuften Arten kartiert. Die Änderungen der Indikatorliste sind Tabelle 17 zu entnehmen.

Wie unter 3.5.3 erläutert wurde die Anwendung des Zusatzkriteriums "Massenbestände" auf Probestellen mit RI > -50 beschränkt.

Wasserkörper vom Typ MKp werden nach der Überarbeitung der Klassengrenzen und Zusatzkriterien gemäß Tabelle 5 bewertet.

Tabelle 5: Zuordnung der Indexwerte zu den Ökologischen Potentialklassen (ÖZ) - Typ MKp

ÖZ	RI (umgerechnet)
1	1,00 - 0,76
2	<0,76 - 0,51
3	<0,51 - 0,26
4	<0,26 - 0,01
5	0,01 - 0,00 oder Makrophytenverödung

- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze von weniger als 4 m verringert sich der RI um 50, wenn der See eine maximale Tiefe von mindestens 4 m aufweist
- **bei einem RI** > **-50** und Dominanzbeständen von *Ceratophyllum demersum, Elodea* canadensis/ nuttallii, Myriophyllum spicatum, Najas marina subsp. intermedia oder *Potamogeton pectinatus* verringert sich der RI um 50
- wird der RI durch die Anwendung der Kriterien <-100, wird er auf -100 gesetzt

3.5.6 Ökoregion norddeutsches Tiefland

TKg10 - Stellen stabil geschichteter karbonatischer Wasserkörper des Tieflandes mit relativ großem EZG

Für die Ökoregion Norddeutsches Tiefland lagen die meisten Neudaten vor. 11 der neu untersuchten Gewässer wurden dem Typ TKg10 zugeordnet. In keinem der Seen wurden noch nicht eingestufte Arten gefunden. Tabelle 17 enthält die Änderungen der Indikatorliste. Insbesondere characeenreiche Gewässer werden nach der Überarbeitung besser beurteilt.

Die Überarbeitung des Zusatzkriteriums "Mittlere UMG" ist unter 3.5.2 erläutert. Die Einschränkung des Zusatzkriteriums "Massenbestände" auf Probestellen mit RI > -50 wird unter 3.5.3 erörtert.

Wasserkörper vom Typ Tkg10 werden nach der Überarbeitung der Klassengrenzen und Zusatzkriterien gemäß Tabelle 6 bewertet.

Tabelle 6: Zuordnung der Indexwerte zu den Ökologischen Potentialklassen (ÖZ) - Typ Tkg10

ÖZ	RI (umgerechnet)
1	1,00 - 0,68
2	<0,68 - 0,51
3	<0,51 - 0,26
4	<0,26 - 0,01
5	0,01 - 0,00 oder Makrophytenverödung

- bei einem RI > 0 und einer unteren Vegetationsgrenze zwischen 4 m und 6 m verringert sich der RI um 10
- bei einem RI > 0 und einer unteren Vegetationsgrenze zwischen 2,5 m und 4 m verringert sich der RI um 20
- bei einer unteren Vegetationsgrenze von weniger als 2,5 m verringert sich der RI um 50
- Bei einem RI > -50 und Dominanzbeständen von Ceratophyllum demersum, C. submersum, Elodea canadensis/ nuttallii, Myriophyllum spicatum, Najas marina subsp. intermedia oder Potamogeton pectinatus verringert sich der RI um 50
- wird der RI durch die Anwendung der Kriterien <-100, wird er auf -100 gesetzt

TKg13 - Stellen stabil geschichteter karbonatischer Wasserkörper des Tieflandes mit relativ kleinem EZG

Dem Gewässertyp TKg13 wurden Daten zu 25 neuuntersuchten Gewässern zugeordnet. Auch in diesen Seen wurden keine noch nicht eingestuften Arten gefunden. Tabelle 17 enthält die Änderungen der Indikatorliste. Characeenreiche Gewässer werden nach der Überarbeitung besser beurteilt.

Die Überarbeitung des Zusatzkriteriums "Mittlere UMG" ist unter 3.5.2 erläutert. Die Einschränkung des Zusatzkriteriums "Massenbestände" auf Probestellen mit RI > -50 wird unter 3.5.3 erörtert.

Wasserkörper vom Typ Tkg13 werden nach der Überarbeitung der Klassengrenzen und Zusatzkriterien gemäß Tabelle 7 bewertet.

Tabelle 7: Zuordnung der Indexwerte zu den Ökologischen Potentialklassen (ÖZ) - Typ Tkg13

ÖZ	RI (umgerechnet)
1	1,00 - 0,71
2	<0,71 - 0,51
3	<0,51 - 0,26
4	<0,26 - 0,01
5	0,01 - 0,00 oder Makrophytenverödung

- bei einem RI > 0 und einer unteren Vegetationsgrenze zwischen 5 m und 8 m verringert sich der RI um 10
- bei einem RI > 0 und einer unteren Vegetationsgrenze zwischen 2,5 m und 5 m verringert sich der RI um 20
- bei einer unteren Vegetationsgrenze von weniger als 2,5 m verringert sich der RI um 50
- Bei einem RI > -50 und Dominanzbeständen von Ceratophyllum demersum, C. submersum, Elodea canadensis/nuttallii, Myriophyllum spicatum, Najas marina subsp. intermedia oder Potamogeton pectinatus verringert sich der RI um 50
- wird der RI durch die Anwendung der Kriterien <-100, wird er auf -100 gesetzt

TKp - Polymiktische karbonatreiche Wasserkörper des Tieflandes

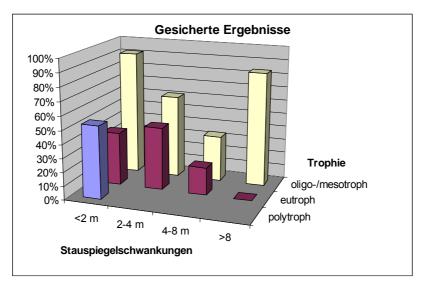
Dem Gewässertyp TKp wurden Daten zu 12 neuuntersuchten Gewässern zugeordnet. In diesen Seen wurde als einzige noch nicht eingestufte Art *Oenanthe aquatica* in 0-1 m gefunden, die in den Seen des Tieflands in Artengruppe B eingestuft werden kann (Tabelle 17). Auch in diesen Gewässertyp werden Characeenreiche Gewässer nach der Überarbeitung besser beurteilt.

Die Überarbeitung des Zusatzkriteriums "Mittlere UMG" ist unter 3.5.2 erläutert. Die Einschränkung des Zusatzkriteriums "Massenbestände" auf Probestellen mit RI > -50 wird unter 3.5.3 erörtert.

Wasserkörper vom Typ Tkp werden nach der Überarbeitung der Klassengrenzen und Zusatzkriterien gemäß Tabelle 8 bewertet.

Tabelle 8: Zuordnung der Indexwerte zu den Ökologischen Potentialklassen (ÖZ) - Typ Tkp

ÖZ	RI (umgerechnet)
1	1,00 - 0,70
2	<0,70 - 0,51
3	<0,51 - 0,26
4	<0,26 - 0,01
5	0,01 - 0,00 oder Makrophytenverödung


- bei einem RI > 0 und einer unteren Vegetationsgrenze zwischen 2,5 m und 4 m verringert sich der RI um 10 wenn der See eine maximale Tiefe von mindestens 4 m aufweist
- bei einer unteren Vegetationsgrenze von weniger als 2,5 m verringert sich der RI um 50 wenn der See eine maximale Tiefe von mindestens 2,5 m aufweist
- Bei einem RI > -50 und Dominanzbeständen von Ceratophyllum demersum, C. submersum, Elodea canadensis/nuttallii, Myriophyllum spicatum, Najas marina subsp. intermedia oder Potamogeton pectinatus verringert sich der RI um 50
- wird der RI durch die Anwendung der Kriterien <-100, wird er auf -100 gesetzt

3.5.7 Empfehlungen zur Bewertung von Talsperren

Die Stauspiegelschwankungen der Talsperren und Speicher wirken sich nicht nur auf den Nährstoffeintrag bzw. auf dessen Dynamik aus (HOEHN et al. 2008), auch der von Makrophyten besiedelbare Gewässerbereich verändert sich regelmäßig. In Abhängigkeit von Amplitude und Frequenz der Schwankungen müssen die Arten im Flachwasserbereich Trockenfallen ertragen, während Lichtangebot und Druckverhältnisse für die weiter unten siedelnden Arten je nach Höhe der darüber liegenden Wassersäule stark variieren. Bisherige Untersuchungen (STELZER & VOGEL 2006, 2007, SCHAUMBURG et al. 2008) zeigen, dass in Gewässern mit stark schwankenden Wasserständen nur in Ausnahmefällen gut ausgebildete, großflächige Makrophytenbestände vorkommen.

Dabei sind neben Amplitude, Frequenz und Saisonalität des Stauspiegels auch die Trophie und die damit verbundene maximale Besiedlungstiefe der Makrophyten von Bedeutung. In einem eutrophen Gewässer, in dem die Vegetation aufgrund der Lichtverhältnisse nur die obersten Meter besiedeln kann, machen schon relativ geringe regelmäßige Wasserstandsschwankungen eine Besiedlung mit submers wachsenden Makrophyten nahezu unmöglich. In einem nährstoffarmen Gewässer mit hohen Sichttiefen hingegen kann die Vegetation eher Bereiche besiedeln, die währende der Hauptvegetationszeit auch bei niedrigem Wasserstand ständig überflutet ist. Gut ausgebildete Makrophytenbestände, die eine gesicherte Bewertung mit der Biokomponente Makrophyten zulassen sind daher am ehesten in oligo- und mesotrophen Gewässern mit nicht zu hohen Stauspiegelschwankunden zu finden.

Auch im vorhandenen Datensatz zeigt sich die Tendenz, dass der Anteil gesichert bewertbarer Probestellen sowohl mit steigender Trophie als auch mit zunehmender Stauspiegelschwankung abnimmt (Abbildung 3). Ausnahmen bilden hier der oligotrophe Walchensee sowie der mesotrophe Forggensee. Von den beiden Gewässern weisen trotz starker Wasserstandsschwankungen von 6,9 m bzw. 16 m insgesamt 83% der Transekte eine Gesamtquantität auf, die für eine gesicherte Bewertung ausreichend wäre, also fast genauso viele wie in Gewässern mit vergleichbarer Trophie, deren Stauspiegelschwankungen weniger als zwei Meter betragen. Sowohl der Walchensee als auch der Forggensee dienen der Stromgewinnung und werden im Winter um mehrere Meter abgelassen während sie sich von Juni bis Oktober praktisch im Vollstau befinden. Diese Beispiele legen nahe, dass neben der Amplitude der Wasserstandsschwankungen auch deren Frequenz bzw. Zeitpunkt von Bedeutung sind.

Abbildung 3: Gesicherte Bewertungen von Talsperren/Speichern in Abhängigkeit der Wasserstandsschwankungen (Probestellen in Prozent)

Auch die Gewässer, die über eine ausreichende Makrophytenvegetation verfügen, lassen sich nicht in allen Fällen mit den vorhandenen Verfahren plausibel bewerten. Selbst wenn, wie von SCHAUMBURG et al. (2008) gefordert wird, auf die Anwendung des Zusatzkriteriums der unteren Vegetationsgrenze verzichtet wird, ergeben sich in einigen Fällen zu streng erscheinende Bewertungen (vgl. Kapitel 3.3.1). In einigen Talsperren ohne erkennbare stoffliche Belastungen wird die Vegetation anstatt der typspezifischen Arten von euryöken Arten wie Potamogeton perfoliatus oder Persicaria amphibia und Störzeigern wie Elodea nuttallii dominiert was für diese Gewässer ein zu streng erscheinendes Bewertungsergebnis zur Folge hat. Dieses Problem ist auch VAN DE WEYER (2007) bekannt, der als häufigste Art in Nordrhein-Westfälischen Talsperren *Elodea* nuttallii nennt. Lediglich in oligotrophen Talsperren mit geringen Wasserstandsschwankungen fand er stets oligotraphente Makrophyten als dominante Arten. Referenzgewässer mit Stauspiegelschwankungen von mehr als drei Metern kamen in drei verschiedenen Ausprägungen vor: vegetationsfrei, von oligotraphenten Arten dominiert oder von euryöken Arten dominiert. Nach VAN DE WEYER (2007) wird die Vegetation dieser Gewässer stark durch den Stoffeintrag aus zufließenden Bächen bestimmt. Eine ökologische Bewertung anhand von Makrophyten ist demnach für Gewässer mit größeren sommerlichen Wasserstandsschwankungen nicht sinnvoll.

Wasserstandsschwankungen außerhalb der Vegetationsperiode scheinen nach bisherigen Erkenntnissen einen weniger starken Einfluss auf die aquatische Vegetation zu haben. In den extremen Fällen jedoch, in denen die Gewässer im Winter ganz oder zu großen Teilen trocken fallen, ergeben sich auch bei sommerlich nahezu konstantem Wasserstand besondere Bedingungen, die eine Bewertung mit Makrophyten nicht sinnvoll erscheinen lassen.

Bei der Bewertung von Talsperren und Speichern ist folgendes zu beachten:

- Die Bewertung erfolgt anhand des ähnlichsten Makrophytentyps
- Vor Beginn der Probenahme sind Informationen über den Verlauf des Staupegels auszuwerten.
- Gewässer, die entweder regelmäßig ganz zu oder großteils trocken fallen oder sommerliche Wasserstandsschwankungen von mehr als 3 m aufweisen, können nur unter Vorbehalt bewertet werden.

Das Zusatzkriterium der unteren Vegetationsgrenze darf bei Gewässern mit starken sommerlichen Pegelschwankungen **nicht** angewendet werden.

Die Ergebnisse müssen vor einer Verschneidung mit dem Ergebnis der Diatomeenbewertung kritisch auf Plausibilität geprüft werden.

3.6 Bewertung der Gewässer nach überarbeitetem Verfahren

3.6.1 Veränderungen in den Bewertungsergebnissen durch die Überarbeitung

Die Bewertungsergebnisse nach dem überarbeiteten Verfahren sind in Tabelle 73 bis Tabelle 77 im Anhang zu finden. Während sich die Bewertungen von Gewässern der Ökoregionen (Vor-)Alpen und Mittelgebirge nur geringfügig veränderten, gibt es in der Ökoregion Norddeutsches Tiefland größere Unterschiede zu den Ergebnissen vor der Überarbeitung. Während characeenreiche Transekte nun besser bewertet werden, werden Stellen mit sehr geringer UMG (> 2,5 m) und negativem RI nun schlechter bewertet. Insgesamt werden weniger Gewässer dem mäßigen ökologischen Potential zugeordnet.

3.6.2 Überprüfung der Plausibilitätsrückmeldungen

Nach Überarbeitung des Verfahrens wurden die neuen Bewertungsergebnisse mit den Plausibilitätsrückmeldungen der Länder verglichen (Kapitel 3.2.2). Tabelle 9 zeigt, wie viele Befunde nach der neuen Bewertung als plausibel oder nicht plausibel (nur gesicherte) eingestuft wurden (Bewertung plausibel, Bewertung nicht plausibel). Unplausible Probestellen wurden wenn möglich nach zu guter oder zu schlechter Bewertung unterschieden (Bewertung zu gut, Bewertung zu schlecht, unklar).

Der Anteil der nicht gesichert bewertbaren Stellen in Typ TKg13 hat sich im Vergleich zu Tabelle 2 von 23 auf 37 erhöht, da die Stellen des Goitzschesees (ST) wegen des geringen Alters des Gewässers (vgl. Kapitel 3.3.4) ausgeschlossen wurden.

Makrophytentyp	gesamt	gesichert	ungesichert	Bewertung plausibel	Bewertung nicht plausibel	unklar	Bewertung zu gut	Bewertung zu schlecht
ТКр	30	25	5	24	1	0	0	1
TKg10	23	17	6	17	0	0	0	0
TKg13	93	56	37	48	8	0	4	4
gesamt	146	98	48	89	9	0	4	5

 Tabelle 9: Übersicht über die Angaben zur Plausibilität (Anzahl Probestellen/Untersuchungen)

Ein Vergleich mit den Auswertungen vor der Überarbeitung zeigt, dass sich der Anteil der Stellen deren Bewertung plausibel erscheint deutlich erhöht hat (Abbildung 4 und Kapitel 3.2.2). Von den Bewertungen des Typs TKp entsprechen nun 80% aller Befunde und 96 % der gesicherten Befunde den Erwartungen. Bei Typ TKg10 können nun 74% aller Bewertungsergebnisse und alle gesicherten Ergebnisse als plausibel beurteilt werden. Auch bei Typ TKg13 überwiegen nun die plausiblen Bewertungen mit 51 % aller Ergebnisse und 86% der gesicherten Ergebnisse. Insgesamt verbessert sich der Anteil der als plausibel eingestuften Stellen an den gesicherten Probestellen auf 91%.

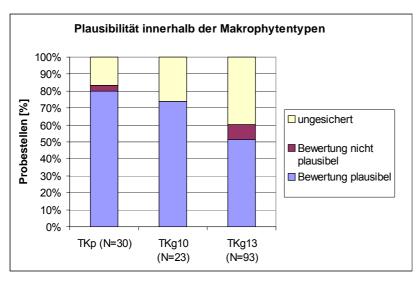


Abbildung 4: Plausibilitätsangaben zu den Probestellen in %

4 Diatomeen

4.1 Aufgabenstellung

Die usprünglich im Projektantrag vorgesehenen Überarbeitungsschwerpunkte wurden aufgrund der Ergebnisse des im Mai/Juni 2010 abgehaltenen Workshops Norddeutsche Diatomeen (siehe SCHAUMBURG et al. 2011) und der Abstimmung innerhalb des LAWA-Expertenkreises Seen (unveröffentlichtes Protokoll der 60. Sitzung des LAWA-Expertenkreises am 16. und 17.02.2011 in Düsseldorf) überarbeitet und zum größten Teil in das Folgeprojekt O10.10 verschoben.

Mit dem vorliegenden Projektbericht O10.09 wird ein Vorschlag zur Methodik bei der Beprobung von Gewässern mit überwiegend Weichsedimenten vorgestellt. Dieser Vorschlag wurde von J. Schönfelder erstellt und den Teilnehmern des erwähnten Workshops zur Diskussion und Ergänzung zur Verfügung gestellt. Der Text findet sich mit den eingearbeiteten Ergänzungen im folgenden Kapitel 4.2.

Die Vorgehensweisen werden zum großen Teil auch in die Handlungsanweisung übernommen. Dabei ist aber zu berücksichtigen, dass bisher nur wenige Anwender Erfahrung mit diesen Methoden haben. Die vorgesehenen Auswertungen, mit welchen SH u.a die Auswirkungen verschiedener Substrate auf die Diatomeenzönosen ermitteln wollte, liegen bis jetzt nicht vor. Konkrete Aussagen über Konsequenzen für das Bewertungsergebnis bei der Beprobung von z.B. pflanzlichen Substraten im Vergleich zu Bodensubstrat können zurzeit noch nicht getroffen werden. Beeinflussungen des Bewertungsergebnisses durch die Beprobung in größeren Tiefen können ebenfalls nicht ausgeschlossen werden und gelten eher als wahrscheinlich. Diese Tiefenproben werden deswegen in der Handlungsanweisung nicht vorgesehen. Proben von pelzartig bewachsenem Totholz beinhalten oft Monokulturen und werden ebenfalls für die Routinebeprobung in der Handlunganweisung nicht vorgesehen.

4.2 Methodische Vorgaben für die Entnahme von Diatomeenproben im Litoral von Seen im Norddeutschen Tiefland

Beprobt werden die für den jeweiligen See typischen Bodensubstrate der oberen Litoralzone (Bereich der einfachen Sichttiefe des jeweiligen Sees). Bevorzugt werden Tiefen von 0.3 - 2.0 m beprobt. Falls nach den folgenden Vorgaben erforderlich, können ausnahmsweise auch Tiefen von 2.0 m - 8.0 m beprobt werden. Die Probenahme setzt nicht zwingend eine einschlägige Berufser-

fahrung als Diatomologe voraus, sondern kann auch von freilanderfahrenen Probenehmern anderer Berufsgruppen nach einer mehrtägigen Anleitung / Schulung durchgeführt werden.

Grundsätzlich besteht das Ziel darin, die für die Litoralzone des untersuchten Sees charakteristischen Diatomeenassoziationen lebend und in möglichst ausgereiftem Sukzessionsstadium zu sammeln. Aufgrund der morphologischen Unterschiede zwischen den verschiedenen Uferabschnitten von Seen sind folgende habitatspezifische Besonderheiten bei der Aufsammlung zu beachten.

4.2.1 Ufer ohne geschlossene Röhrichte

An Uferstellen mit stark aufgelockertem Röhrichtbestand (Meso-Phragmitetum) oder fehlendem Röhricht werden durch Begehung mit der Wathose unter Inaugenscheinnnahme der vorhandenen Bodensubstrate auf einer Uferlänge von ca. 10 m beiderseits eines Monitoringtransekts gezielt Bereiche mit optisch in Erscheinung tretenden lebenden Diatomeenassoziationen in Wassertiefen von 0.3 - 0.5 m gesucht.

Innerhalb dieses ca. 20 x 20 m großen beprobten Uferbezirks werden fünf Teilproben lebender Diatomeengemeinschaften zusammen mit den als Aufwuchssubstrat dienenden dominanten Bodensubstraten entnommen (Multihabitatsampling). Die Verteilung der Teilproben sollte in etwa den Dominanzverhältnissen der verschiedenen Bodensubstrate im ca. 20 x 20 m großen Uferbezirk entsprechen. Sollten gut bewachsene Steine im Uferbezirk vorhanden sein, so sind diese immer mindestens mit einer Teilprobe zu berücksichtigen.

Abbildung 5: Optimalhabitat für die Diatomeenprobenahme: Mit ausgereiften Diatomeenassoziationen bewachsene Steine in ca. 30 cm Wassertiefe vor schütterem Röhricht. Großer Döllnsee (Brandenburg), Foto: H. Henker, Institut für angewandte Gewässerökologie GmbH, Seddiner See.

Wichtig für die Qualität des Bewertungsergebnisses ist, dass mit dem suchenden Blick eines Diatomologen bzw. diatomeenökologisch geschulten Probenehmers gezielt ausgereifte Diatomeenassoziationen ausgewählt und beprobt werden. Die Entnahme von Pionierassoziationen in vom Wellenschlag regelmäßig aufgewirbeltem Sand, auf blankgeputzt erscheinenden Steinen oder gar auf grünen (heurigen, diesjährigen) Schilfhalmen hat keinen Zweck und führt häufig zu nicht bewertbaren Proben, weil im Regelfall auf solchen Substraten nur sehr wenige sensible Referenzarten (A-Arten) und zumeist auch nur sehr wenige Störungszeiger (C-Arten) nachweisbar sind.

Die Entnahme der Bodensubstrate mit den darauf befindlichen Diatomeenassoziationen erfolgt im Regelfalle mit der Hand. Gut bewachsene Steine werden entnommen und die darauf befindlichen Ablagerungen einschließlich Aufwuchs mit den Fingern oder einer diatomeenfreien Bürste (Einmalzahnbürste o.ä.) abgerieben, wobei für jede Probe eine separate, neue oder gut gereinigte Bürste verwendet werden muss, um Verschleppungen von Diatomeen zu vermeiden. Das Abkratzen der Steine kann auch mit einem Messer oder einem (angeschliffenen) Teelöffel erfolgen.

Gut entwickelte Diatomeenassoziationen auf Sand fallen durch ihre braune Pigmentierung (bei Dominanz von *Geissleria* spp. oder *Gomphonema* spp.) oder durch ihre puddingartige (z. B. *Fragilara pulchella*), leicht kohäsive (*Mastogloia* spp.) bis locker flockige (kohäsionslose) aber dann zumeist stark voluminöse Struktur (*Fragilaria brevistriata*, *F. construens*) auf.

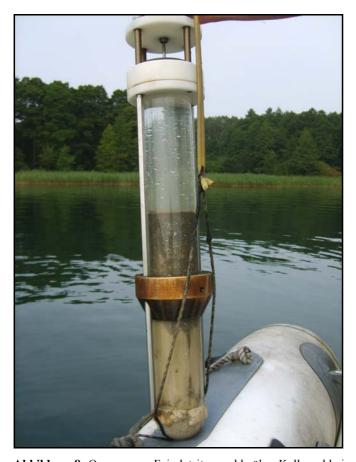
Abbildung 6: Epipsammische Diatomeenassoziationen wie hier im Bild fallen meistens durch unregelmäßig geformte Flecken mit tiefbrauner bis olivgrüner Färbung auf. Großer Döllnsee (Brandenburg), Foto: H. Henker, Institut für angewandet Gewässerökologie GmbH, Seddiner See.

Diese gut entwickelten epipsammischen Assoziationen sind am besten mit einer scherenartigen Schließbewegung von Mittelfinger und Ringfinger der horizontal auf das Substrat gleitenden Hand auf die Handfläche zu bringen, mit der Hand aus dem Flachwasser zu entnehmen und in das Probengefäß zu überführen. Die Verwendung von Werkzeugen (Löffel, Sedimentstecher) zur Beprobung epipsammischer Assoziationen ist freigestellt, sofern damit ein ausreichender

Materialumfang (mindestens 5 ml sandfreier Feinschlamm nach einem Absetzvorgang von 10 Minuten) gewährleistet wird. Bei Einsatz von Werkzeugen ist deshalb ggf. die Zahl der Teilproben zu vervielfachen.

Für die Entnahme von Aufwuchsdiatomeen auf dem Sediment eignen sich ebenfalls Saug- oder Pumpsysteme. Mit einer großen Spritze (Infusionsspritze), auf die in einigen Fällen noch ein Schlauch aufgesetzt wird, können die oberen Diatomeen abgesaugt werden, ohne Sediment aufzuwirbeln. Mit der Verlängerung durch einen Schlauch können bei guten Bedingungen so Tiefen von 50-100 cm beprobt werden (Abbildung 7). In Süddeutschland wurden zur Beprobung von epipsammischen Diatomeengesellschaften auch bereits Handsaugpumpen mit zwischengeschalteter Filterkammer mit Erfolg eingesetzt.

Abbildung 7: Beprobungswerkzeug für den Aufwuchs auf Sand, feinem Kies, auch zur Beprobung innerhalb eines Stechrohres. Spitze der Spritze (oder des Schlauches) knapp über das Sediment halten und ansaugen. Bei grobem Sand muss evtl. die Öffnung vergrößert werden


An Seeufern, an denen Bäume mit gut ausgebildeter Krone ins Wasser gestürzt sind, und die Äste und dicken Zweige auffällig pelzartig mit mehr als 5 mm dicken Diatomeenassoziationen bewachsen sind, sollte eine Teilprobe von Totholz mit beprobt werden.

Sofern der Auftraggeber dies ausdrücklich wünscht und honoriert, ist eine getrennte Aufbewahrung und Bearbeitung der beprobten Substrate möglich. Im Regelfalle werden die ca. fünf oder mehr Teilproben der verschiedenen Substrate jedoch in einem Probenahmegefäß zu einer Multihabitatprobe vereint und durch Zugabe einer ausreichenden Menge an 96%igem Ethanol konserviert. Ausreichend ist die Menge an Ethanol, die eine ca. 70%ige Endkonzentration gewährleistet. Falls viel Sand mit eingesammelt wurde, empfiehlt es sich, die Probe vor der Konservierung kräftig zu schütteln und nur die Diatomeensuspension zur Konservierung und Mitnahme in das Probenahmegefäß abzudekantieren. Der ausgeschüttelte Sand bleibt als Bodensatz übrig und kann somit vor der Konservierung in das Gewässer zurückgeführt werden.

4.2.2 Ufer mit geschlossenen dichten Röhrichten (Eu-Phragmitetum, Typha-Bestände)

4.2.2.1 Sedimentproben

An Uferstellen mit dichtem geschlossenem Röhrichtbestand reicht dieser in der Regel bis in ca. 1,20 m Wassertiefe. Inmitten solcher dichten Röhrichtbestände ist der Gewässergrund duch die Röhrichthalme stark beschattet und das Wasser steht mit dem Freiwasser nicht oder nur wenig im Austausch. Die Diatomeenassoziationen inmitten von dichten Röhrichtbeständen lassen deshalb keine unmittelbaren Aussagen über die Beschaffenheit des Freiwassers des untersuchten Sees zu. Die Bewertung von Diatomeenproben aus dichten Röhrichtbeständen ist daher nicht verfahrenskonform und muss unterbleiben. Vielmehr ist in Uferbereichen mit geschlossenem Röhrichtbestand eine Beprobung des gut bewachsenen Sandes oder der Feindetritusmudde seewärts der Röhricht-Freiwasser-Kontaktzone vorzunehmen. Dazu ist ein Sedimentstechrohr (z. B. UWITEC-Corer, Fa. Niederreiter, Mondsee, Austria) vom Boot aus einzusetzen.

Abbildung 8: Organogene Feindetritusmudde über Kalkmudde in einem Sedimentkern-Sammler nach Niederreiter (Fa. UWITEC, Mondsee, Austria). Foto: H. Henker, Institut für angewandte Gewässerökologie GmbH, Seddiner See.

Wahlweise kann die Beprobung der Sedimentoberfläche auch durch erfahrene Makrophytentaucher erfolgen.

Soweit die Sichttiefen und Vegetationsverhältnisse das zulassen, ist organogenes Feinsediment (Mudde) auf Sand in makrophytenfreien oder höchstens schütter bewachsenen Bodenbezirken mit

wenig gestörten Sedimentationsbedingungen zu suchen und zu beproben. Keinesfalls dürfen in Fäulnis befindliche Löcher in Characeenrasen beprobt werden. Das gleiche gilt für Bänke aus Muschelschill.

Entnommen wird der obere Zentimeter frischer Feinsedimentauflage (Mudde) auf einer Uferlänge von ca. 10 m beiderseits des Transekts. Darin sind in Wassertiefen von 1,20 – 2,00 m im Normalfall neben den hier lebenden epipsammisch-epipelischen Assoziationen auch zahlreiche abgestorbene Zellen oder Schalen epiphytischer Taxa zu finden, die hier absedimentiert sind. Ziel der Beprobung der Litoralmudde ist es, sowohl die hier lebenden epipsammisch-epipelischen Assoziationen als auch abgestorbene Zellen oder Schalen epiphytischer Taxa in möglichst großer Artenzahl zu finden. Aufgrund der häufig unregelmäßigen Verteilung der Feindetritusmudde (Patchiness) auf Sandgrund werden in dem ca. 20 x 20 m großen Uferbezirk fünf Teilproben entnommen (Multihabitatsampling). Die Verteilung der Teilproben sollte in etwa den Dominanzverhältnissen der verschiedenen Bodensubstrate entsprechen. Die Entnahme von Pionierassoziationen in von Welleneinfluss regelmäßig aufgewirbeltem Sand, der an Brandungsufern immer der Röhricht-Freiwasser-Kontaktzone seeseitig vorgelagert ist, oder die Beprobung von Muschelschill hat keinen Zweck und führt häufig zu nicht bewertbaren Proben, weil im Regelfall auf solchen Substraten zu wenige sensible Referenzarten (A-Arten) und zu wenige Störungszeiger (C-Arten) nachgewiesen werden können.

Die Entnahme des oberen Zentimeters des Sandes oder der frischen Mudde bleibt dem Geschick des Probenehmers überlassen. Bewährt hat sich, das im Plexiglasrohr erkennbare saubere überstehende Wasser erst vorsichtigst weitgehend abzudekantieren, um dann den oberen Zentimeter an Feinsediment etwas beschleunigt in das Probengefäß zu gießen. Hier kann ebenfalls eine Saugvorrichtung wie in Kapitel 4.2.1 beschrieben zur Gewinnung der Probe verwendet werden.

In jedem Fall muss die Probe am Ende mindestens 5 ml organogenes Feinsediment (Diatomeenmudde) enthalten. Ggf. ist dazu die Zahl der Teilproben zu vervielfachen und bei Brandungseinfluss seewärts, notfalls bis zur Seemitte hin, auszudehnen. Es ist dringend zu beachten, dass ungestörte Sedimentation frischer Feindetritusmudde in großen Seen mit starker Strömung längs der Uferlinie durchaus erst in Tiefen unterhalb von 8 m vorliegen kann. Die Leine des Sedimentstechers muss entsprechend lang sein.

Die Teilproben werden in einem Probenahmegefäß vereint und durch Zugabe einer ausreichenden Menge an 96%igem Ethanol konserviert. Ausreichend ist die Menge an Ethanol, die eine ca. 70%ige Endkonzentration gewährleistet. Falls viel Sand mit eingesammelt wurde, empfiehlt es sich, die Probe vor der Konservierung kräftig zu schütteln und eine hinreichende Menge der Diatomeensuspension in ein neues Probenahmegefäß abzudekantieren, um überschüssiges Material, insbesondere Sand, gar nicht erst mit zu konservieren und evtl. ins Labor mitnehmen zu müssen.

4.2.2.2 Röhrichtproben

An allen Messstellen, an denen keine erfolgreiche Beprobung des Bodensubstrats gemäß der Kapitel 4.2.1 bis 4.2.2.1 möglich ist oder es nach einer eingeschränkt erfolgreichen Probenahme unsicher ist, ob die Diatomeenprobe vom Bodensubstrat genügend Indikatorarten für die Referenzartenbewertung enthält, und an der Freiwasser-Röhricht-Kontaktzone vorjährige Röhrichthalme (*Phragmites* oder *Typha*) mit ausgereiften Diatomeenassoziationen bewachsen sind, und die Be-

wertung der Uferstelle für die Bewertung des Oberflächenwasserkörpers von Interesse oder sogar notwendig ist, ist zur Sicherheit eine Aufwuchsprobe von vorjährigen Röhrichthalmen zu entnehmen. Dazu sind ca. 8 – 12 senkrecht stehende, abgestorbene Röhrichthalme des Vorjahres mit ausgereiften Diatomeenassoziationen (Abbildung 9) gezielt auszuwählen, ca. 30 cm unterhalb des Wasserspiegels abzuknicken oder abzuschneiden und in 1-Liter-Gefrierbeutel zu überführen.

Abbildung 9: Vorjährige, abgestorbene Typha-Halme im Seenlitoral mit ausgereift wirkenden Assoziationen von Aufwuchsdiatomeen. Tiefer- oder Grubensee bei Limsdorf (Brandenburg), Foto: J. Schönfelder.

Im Gefrierbeutel werden die brüchigen Halme gegeneinander abgerieben. Der halbflüssige Brei mit den Aufwuchsdiatomeen wird in das Probengefäß geschüttet und mit Ethanol konserviert. Die Reste der Röhrichthalme werden verworfen.

Ein Aufschluss und eine Analyse der Probe von Röhrichthalmen erfolgt immer dann, wenn folgende 2 Bedingungen erfüllt sind:

- Nach dem Aufschluss oder der mikroskopischen Analyse wird festgestellt, dass die Probe von Bodensubstrat für die betreffende Messstelle keine gesicherte Bewertung nach dem Referenzartenmodul von PHYLIB zulässt.
- Die Einbeziehung eines gesicherten Diatomeen-Bewertungsergebnisses für die betreffende Messstelle ist für eine repräsentative Bewertung des OWK mit der Teilkomponente Makrophyten & Phytobenthos aus Sicht der Landesbehörde wünschenswert oder zwingend erforderlich.

5 Interkalibrierung

Die Aufgaben zur Unterstützung der Interkalibrierung bestanden im Jahr 2010 hauptsächlich in der fachlichen Begleitung und Diskussion des Prozesses. Treffen der GIG, die eine Teilnahme erfordert hätten, fanden nicht statt.

Der Hauptteil der Arbeiten waren Berechnungen für die Diatomeeninterkalibrierung in der CBGIG. Dazu wurde ein Unterauftrag an Frau Dr. Schönfelder vergeben, der jedoch als Zuarbeit im Rahmen des Projekts O3.08 geleistet wurde (SCHAUMBURG 2010).

Am Jahresende 2010 wurde die intensive Beteiligung Deutschlands an der Interkalibrierung der Makrophytenbewertung in der CBGIG wieder aufgenommen. Seitens der Projektnehmer wurden in Abstimmung mit den betroffenen Bundesländern Makrophytendaten von Seen des Norddeutschen Tieflandes an die GIG geliefert und danach Bewertungen der GIG-Daten mit dem deutschen Verfahren am BLfU durchgeführt.

Damit sind im Rahmen des Projekts keine kostenintensiven Arbeiten zur Interkalibrierung angefallen.

6 Handlungsanleitung

6.1 Vorbemerkung

Die vorliegende Handlungsanweisung entstand aus dem Projekt zur Weiterentwicklung und Anpassung des deutschen Bewertungsverfahrens Makrophyten & Phytobenthos für Seen im Sinne der EG-WRRL Phylib. In Rahmen dieses Projektes wurde der Schwerpunkt der Bearbeitung auf die künstlichen und erheblich veränderten Seen (AWB und HMWB) gelegt, die vorliegenden Daten und Ergebnisse bzgl. natürlicher Seen aber mit berücksichtigt. Die Handlungsanweisung beschreibt die Vorgehensweise bei der Bewertung sowohl für die Ermittlung des Ökologischen Zustandes als auch des Ökologischen Potentials.

Das Prinzip und der Aufbau des Bewertungsverfahrens sowie die Vorgehensweise bei der Probenahme ist für beide Gewässergruppen ähnlich und nur dort, wo die speziellen Besonderheiten und Gegebenheiten der künstlichen und erheblich veränderten Gewässer es erfordern, angepasst. Weite Teile der vorliegenden Handlungsanweisung sind daher für alle Seetypen gültig. Wo sich das Verfahren zwischen den natürlichen und den künstlichen, bzw. erheblich veränderten Seen unterscheidet, werden beide Vorgehensweisen beschrieben. Dies betrifft beispielsweise das Bewertungsergebnis. In natürlichen Seen wird die Ökologische Zustandsklasse ermittelt, bei künstlichen und erheblich veränderten Gewässern das Ökologische Potential.

Die in der Handlungsanweisung enthaltenen Listen von Indikatortaxa werden in ihrer aktuellsten und damit gültigen Form in der jeweils aktuellen Version der Software Phylib geführt, sobald diese an den neuesten Bewertungsstand angepasst wurde. Eventuell nötige Ergänzungen oder Änderungen der Listen (z.B. bzgl. der neuesten Systematik) werden dort vorgenommen. Die Handlungsanweisung wird diesbezüglich nicht laufend aktualisiert.

Die Typologie der Seen in Deutschland (MATHES et al. 2002) beinhaltet u.a. Typen, die ausschließlich oder fast ausschließlich durch künstliche und/oder erheblich veränderte Gewässer vertreten sind. In der EG-WRRL ist eine Typisierung, wie die der natürlichen Gewässer, für die künstlichen und erheblich veränderten Gewässer nicht vorgesehen. In ihren Rand- und Nutzungsbedingungen ähnliche künstliche und erheblich veränderte Gewässer wurden für die Erarbeitung des Bewertungsverfahrens und die Bewertung in Gruppen zusammengefasst. Diese Gruppen werden im Weiteren als Typen bezeichnet, einerseits um die Gewässer der bereits vorhandenen Typen nach MATHES et al (2002) nicht mit neuen Bezeichnungen zu versehen, andererseits auch um die sprachliche Regelung zu vereinfachen.

Das vorliegende Bewertungsverfahren ist anhand und für Gewässer bzw. Seewasserkörper mit einer Größe von ≥ 50 ha entwickelt worden. Die Bewertungergebnisse für kleinere Gewässer mit diesem Verfahren sind daher kritisch zu hinterfragen.

6.2 Festlegung der benötigten Anzahl repräsentativer Ufertransekte und die Auswahl deren Lage für die Bewertung eines See-Wasserkörpers

Grundsätzlich wird als Erstuntersuchung eines Seewasserkörpers eine Gesamtkartierung empfohlen. In Seen, in denen bislang noch keine Gesamtkartierung der Makrophytenvegetation durchgeführt wurde, sollte eine Übersichtskartierung des gesamten Litoralbereichs erfolgen. Insbesondere bei großen, komplexen Seen kann nur so sichergestellt werden, dass ein repräsentativer Gesamteindruck des Gewässers gewonnen wird und alle Belastungsquellen lokalisiert werden. Die Übersichtskartierung kann z. B. durch Tauchkartierung nach MELZER & SCHNEIDER (2001), durch die Verbindung von Echosondierung und gezielter Transektbetauchung nach JÄGER et al. (2004) oder durch die Kombination aus Luftbildern und Transektuntersuchungen nach SCHMIEDER (1997) erfolgen.

Unabhängig von der gewählten Methode muss sicher gestellt werden, dass die Daten die Voraussetzungen für eine Bewertung nach SCHAUMBURG et al. (2004) und damit nach WRRL erfüllen. Besonders hervorzuheben sind in diesem Zusammenhang die Einhaltung der vorgegeben Tiefenstufen sowie die Abschätzung der Pflanzenmengen nach KOHLER (1978).

Bei Folgeuntersuchungen erfolgt die Ermittlung der Anzahl der Transekte und die Festlegung deren Lage aufgrund der Ergebnisse aus der Gesamtkartierung im Zusammenhang mit den Informationen zur Seeoberfläche, Uferentwicklung, Ufermorphologie und Ufernutzung. Ist keine Gesamt- bzw. Übersichtskartierung möglich, kann die Auswahl nach den Kriterien Seeoberfläche, Uferentwicklung, Ufermorphologie und Ufernutzung erfolgen.

Der Vorschlag zur Ermittlung der benötigten Anzahl repräsentativer Ufertransekte und die Verteilung derselben im Wasserkörper wurde anhand der Teilkomponente Makrophyten entwickelt. Entspricht die Anzahl und die Lage der Untersuchungsbereiche in einem See-Wasserkörper den Anforderungen dieser Vorschrift, wird davon ausgegangen, dass die Transekte der Makrophyten-kartierung auch für die Untersuchung der Teilkomponente Phytobenthos-Diatomeen als repräsentativ anzusehen sind. Für die Bewertung eines ganzen See-Wasserkörpers mit der Biokomponente Makrophyten & Phytobenthos nach WRRL muss daher an jedem ausgewählten Transekt sowohl eine Makrophytenkartierung als auch eine Diatomeenprobenahme stattfinden.

6.2.1 Ermittlung der Stellenzahl

Je größer und komplexer ein Gewässer ist, desto mehr Stellen müssen untersucht werden. Tabelle 10 gibt für einige Beispielseen abhängig von der Oberfläche des Gewässers die Spanne der benötigten Transekte an. Bei stark untergliederten Seen, sollten die Seebecken wie verschiedene Wasserkörper behandelt werden, d. h. für jedes Seebecken sollte die erforderliche Transektzahl anhand der Tabelle ermittelt werden. Abhängig von der Vielseitigkeit der Ufermorphologie und – Nutzung wird die genaue Anzahl der Transekte bestimmt.

Tabelle 10: Empfohlene Transektzahlen in Abhängigkeit der Seeoberfläche (BB = Brandenburg, BW = Baden-Württemberg, BY = Bayern, MV = Mecklenburg-Vorpommern, Ni = Niedersachsen, SH = Schleswig-Holstein)

Oberfläche des Wasserkörpers	Anzahl der Transekte	Beispiele
< 0,5 km ²	1 - 5	+- abgegrenzte Buchten/Seeteile
0,5 - 2,0 km ²	4 - 8	Gr. Gollinsee (BB), Dieksee (SH), Mindelsee (BW)
2,0 - 5,0 km²	5 - 10	Gr. Stechlinsee (BB), Schliersee (BY), Breiter Luzin (MV)
5,0 - 10 km ²	6 - 12	Königssee (BY), Westensee (SH), Tegernsee (BY), Parsteiner See (BB)
10 - 20 km²	8 - 15	Wittensee (SH), Dümmer (NI), Walchensee (BY)
20 - 50 km ²	10 - 20	Selenter See (SH), Steinhuder Meer (NI), Gr. Plöner See (SH), Ammersee (BY)
50 - 100 km²	20 - 30	Starnberger See (BY), Chiemsee (BY)
> 100 km²	30 - 50	Müritz (MV), Bodensee (BW)

Der jeweils niedrigste Wert für eine Seegrößenklasse gilt für weitgehend einheitliche Wasserkörper ohne stark ausgeprägte Buchten oder Inseln. Als Anhaltspunkt kann hier die Uferentwicklung (Werte $\leq 2,0$) herangezogen werden. Auch die Steilheit der Seeufer sollte keine starken Unterschiede aufweisen. Die Nutzung des Umlandes darf keine größeren Unterschiede der lokalen (Nährstoff-) Belastungen erwarten lassen.

Der jeweils größte Wert hingegen bezieht sich auf Seen mit heterogener Ufermorphologie, die vielfältigen Nutzungseinflüssen unterliegen. Solche Seen weisen sich durch eine stark differenzierte Ufermorphologie mit ausgeprägten Buchten und Inseln sowie unterschiedlich steilen Uferabschnitten aus. Am Ufer sind eine Reihe verschiedener Vegetationsformen ausgebildet aber auch verbaute bzw. versiegelte Bereiche zu finden. Aufgrund von vielfältigen Nutzungsformen des Ufers und angrenzendem Umland sind lokale (Nährstoff-) Belastungen zu erwarten.

6.2.2 Festlegen der Lage der Transekte

Die Festlegung der genauen Lage der Transekte erfolgt vor Ort. Nicht beprobt werden sollten Bereiche im unmittelbaren Einflussbereich der Zuflüsse. Bei der Stellenauswahl ist darauf zu achten, die für den See charakteristischen Bereiche zu erfassen, also alle wesentlichen Makrophytenhabitate. Die Auswahl muss in erster Linie auf die Gewässermorphologie abgestimmt werden. Unterschiedlich steile Stellen, Inseln sowie Einbuchtungen sollen durch eine repräsentative Anzahl an Stellen vertreten sein. Bei stark untergliederten Seen mit mehr oder weniger von einander getrennten Seebecken, sind diese entsprechend ihrer Bedeutung für den Gesamtsee zu berücksichtigen. Die Transekte sollen zudem so auf die Seeufer verteilt werden, dass Brandungsund Verlandungsufer sowie unterschiedlich stark beschattete Bereiche erfasst werden. Um potenzielle Belastungsquellen zu erfassen soll die Auswahl nicht nur naturbelassene Stellen, sondern auch unterschiedlich genutzte Bereiche (z.B. Badestellen, Campingplätze, nahegelegene Ackerund Weideflächen) beinhalten.

Das Verhältnis der unterschiedlichen Standorte zueinander sollte dabei grob berücksichtigt werden. Sind z. B. 30 % der Uferlinie flach mit feinem Sediment und 70 % steil mit grobem Substrat, so sollte das Verhältnis unter den untersuchten Stellen ebenfalls 1:2 betragen. Im Idealfall sind alle unterschiedlichen "Uferklassen" repräsentativ vertreten.

6.3 Probenahme und Ermittlung der Makrophyten & Phytobenthos-Biozönose

Die Probenahme wird einmalig im Sommer, zur Hauptvegetationszeit der Makrophyten (gewöhnlich Anfang Juli bis Mitte August) durchgeführt. Zeiten von extremen Wasserständen sollten gemieden werden. Neben der Kartierung der Makrophytenvegetation werden an diesem Termin in jedem Makrophytentransekt Diatomeenproben genommen und für die Aufbereitung aufbewahrt.

Sollten die beiden Teilkomponenten getrennt beprobt werden müssen, so kann die Makrophytenkartierung ohne Diatomeenprobenahme schon ab Mitte Juni erfolgen, abhängig von den Gewässerbedingungen. Eine Diatomeenprobenahme ohne Makrophytenkartierung kann auch noch bis September durchgeführt werden. Allerdings sollten die Termine für die Beprobungen möglichst nahe zusammen liegen.

Die Lage der Probestelle sollte möglichst genau in topographische Karten der Maßstäbe 1:25 000 bzw. 1:50 000 eingetragen werden, aus denen später die **Rechts- und Hochwerte** der Probestellen ermittelt werden können. Im Optimalfall können die Koordinaten mittels eines GPS-Gerätes direkt abgelesen werden. Dann sollten Anfangs- und Endpunkt des Untersuchungsabschnittes sowie die Grenze der Tiefenverbreitung so genau wie möglich festgehalten werden.

Der erste Schritt der Probenahme ist die genaue Bestimmung der Probestellen. Dazu wird das Gewässer nach den Kriterien aus dem Kapitel 6.2.2 begutachtet und die Probestellen für die Makrophytenuntersuchung festgelegt.

Die Diatomeenprobenahme findet vor der Kartierung der Makrophytenvegetation statt, um das Probenmaterial aus einem möglichst ungestörten Bereich des Sediments entnehmen zu können. Alle Untersuchungen und Probenahmen sind möglichst schonend durchzuführen, es ist darauf zu achten, die Bestände der anderen Organismengruppen nicht zu zerstören.

6.3.1 Makrophyten

6.3.1.1 Vorbemerkung

Die Handlungsanweisung stellt die Minimalanforderung für die Bewertung von Seen anhand ihrer makrophytischen Wasserpflanzenvegetation dar. Auch wenn es zur Bewertung der Stelle ausreicht, zusätzlich zur Vegetation Steilheit und Substrat-Art zu erfassen, ist die Aufnahme weiterer **Standortfaktoren** der zu untersuchenden Stellen dennoch empfehlenswert. Der zusätzliche Aufwand ist gering und in manchen Fällen lassen sich dadurch wertvolle Hinweise ableiten z. B. über natürliche Ursachen für das Fehlen der Vegetation an einer Stelle.

Des Weiteren ermöglichen diese Angaben die Bereitstellung einer ebenso umfassenden und flächendeckenden Datengrundlage für Makrophyten in Seen, wie sie für Makrozoobenthos in Fließgewässern durch die konsequente Anwendung des Saprobienindex und die damit verbundene Erhebung der Begleitdaten bereits existiert.

6.3.1.2 Bewertung von Talsperren

Talsperren mit regelmäßigen starken Wasserstandschwankungen bieten für aquatische Makrophyten grundsätzlich keine günstigen Lebensbedingungen. Der von Makrophyten besiedelbare Bereich ändert sich regelmäßig. Viele der Gewässer weisen aus diesem Grund nicht die erforderliche Mindestpflanzenmenge für eine gesicherte Bewertung auf und lassen daher keine Bewertung mit der Biokomponente Makrophyten zu.

Auch die Gewässer, die über eine ausreichende Makrophytenvegetation verfügen, lassen sich in vielen Fällen mit den vorhandenen Verfahren nicht plausibel bewerten. So erweist sich das Zusatzkriterium der unteren Vegetationsgrenze für Gewässer mit regelmäßigen hohen Wasserstandschwankungen weder als praktikabel noch als sinnvoll, da sich die tatsächliche Siedlungstiefe während einer Vegetationsperiode ändert und somit Lichtangebot und Druckverhältnisse für die weiter unten siedelnden Arten je nach Höhe der darüber liegenden Wassersäule stark variieren.

Wasserstandsschwankungen außerhalb der Vegetationsperiode scheinen nach bisherigen Erkenntnissen einen weniger starken Einfluss auf die aquatische Vegetation zu haben. In den extremen Fällen jedoch, in denen die Gewässer im Winter ganz oder zu großen Teilen trocken fallen, ergeben sich auch bei sommerlich nahezu konstantem Wassertand besondere Bedingungen, die eine Bewertung mit Makrophyten nicht sinnvoll erscheinen lassen.

Bei der Bewertung von Talsperren und Speichern ist folgendes zu beachten:

- Die Bewertung erfolgt anhand des ähnlichsten Makrophytentyps
- Vor Beginn der Probenahme sind Informationen über den Verlauf des Staupegels auszuwerten.
- Gewässer, die entweder regelmäßig ganz zu oder großteils trocken fallen oder sommerliche Wasserstandsschwankungen von mehr als 3 m aufweisen, können nur unter Vorbehalt bewertet werden.

Das Zusatzkriterium der unteren Vegetationsgrenze darf bei Gewässern mit starken sommerlichen Pegelschwankungen **nicht** angewendet werden.

Die Ergebnisse müssen vor einer Verschneidung mit dem Ergebnis der Diatomeenbewertung kritisch auf Plausibilität geprüft werden.

Materialien zur Durchführung der Kartierung

- Boot mit angemessener Sicherheitsausrüstung
- Tiefenkarten und topographische Karten 1:25 000 bzw. 1:50 000 (z. B. CD-Atlas 25 GISCAD (1998a, 1998b) oder TK 200 des Bundesamtes für Kartographie und Geodäsie (1998).
- Wathose bzw. Schnorchelausrüstung im Flachwasserbereich
- Sichtkasten
- Beidseitiger mit einem Gewicht (z. B. Tauchblei) beschwerter Rechen (Rechenkopf: 59 cm, Zinkenabstand 2 cm; modifiziert nach DEPPE & LATHROP 1993). Ein am Rechenstiel befestigtes Seil mit Markierungen in Meterabständen erlaubt die Beprobung von definierten Tiefenbereichen. Es ist sicher zu stellen, dass sich das Seil im Wasser nicht ausdehnt.
- ggf. Bodengreifer (Ekman-Birge) und passender Eimer (auch zur Untersuchung des Substrates)

- Tauchausrüstung (alternativ zu Rechen und Bodengreifer bei Durchführung einer Tauchkartierung)
- Ergebnisse früherer Makrophytenkartierungen, falls vorhanden
- Kartierprotokolle und Bleistifte
- Exemplar der Handlungsanweisung
- Fotoapparat (ggf. Filme)
- Kühlbox mit Gefrierakkus
- Tüten, Etiketten, Klammern, Papier für Moos-Herbarbelege
- Herbarpresse und Zubehör
- Bestimmungsliteratur (s. u.)
- Lupe (mind. 10-fache Vergrößerung)
- (tragbares) Stereomikroskop und Zubehör (fakultativ)
- GPS-Gerät
- Unterwasserkamera und/oder Echolot (fakultativ)

Bestimmungsliteratur (Auswahl)

- CASPER & KRAUSCH (1980, 1981)
- KLAPP & OPITZ VON BOBERFELD (1990)
- KRAUSCH (1996)
- KRAUSE (1997)
- ROTHMALER (1994a, 1994b)
- SCHMEIL (1993)

6.3.1.3 Kartieranleitung

Die Kartierung der Makrophytenvegetation erfolgt einmalig in der Hauptvegetationsperiode (Ende Juni bis Mitte August). Zeiten von extremen Wasserständen sollten gemieden werden. Erfasst werden alle submersen sowie unter der Mittelwasserlinie wurzelnden makrophytischen Wasserpflanzen (Characeen, Wassermoose und Gefäßpflanzen).

Für die Anwendung des Bewertungsverfahrens stehen zwei Kartiermethoden alternativ zur Verfügung – die Tauchuntersuchung und die Rechenmethode. Die für das zu beprobende Transekt, bzw. den zu beprobenden Wasserkörper geeignete Methode ist nach Berücksichtigung der spezifischen Gegebenheiten vor Ort auszuwählen. Grundsätzlich soll die Beprobung möglichst schonend durchgeführt werden. Folgende Kriterien stellen eine Hilfe bei der Auswahl der Methode dar.

Die Rechenmethode eignet sich gut bei weichem schlammigen Substrat, hochwüchsigen Arten, lückigem Pflanzenwuchs selbst bei schlechten Sichtverhältnissen (in diesem Fall ist die Fläche der einzelnen Stichproben auszudehnen). Bei felsigem, steilem Substrat, in Naturschutzgebieten, in dichten Schwimmblattgürteln oder bei starkem Wind (KIELER INSTITUT FÜR LANDSCHAFTS-ÖKOLOGIE 2002) ist unter Umständen eine Tauchkartierung sinnvoller.

An jeder ausgewählten Stelle wird ein Bandtransekt von 20–30 m Breite senkrecht zur Uferlinie untersucht, das innerhalb eines ökologisch homogenen Litoralabschnitts liegt. Besondere Beachtung wird dabei Ufermorphologie und -nutzung sowie der Sedimentzusammensetzung beigemessen.

Auch sollen die Untersuchungsflächen eine einheitliche Zusammensetzung der Makrophytenvegetation aufweisen. Jedes Transekt wird fotographisch dokumentiert.

Bei beiden Methoden erfolgt die Einteilung des Litorals in vier Tiefenstufen (0–1 m, 1–2 m, 2–4 m und 4 m bis zur unteren Vegetationsgrenze). **Die Einhaltung der vorgegeben Tiefenstufen ist für die Berechnung des Indexes zwingend erforderlich**. Wenn die Untersuchungsergebnisse zusätzlich für andere Auswertungen z. B., für ein Monitoring im Sinne der FFH-Richlinie verwendet werden sollen, kann es erforderlich sein, die unterste Tiefenzone (> 4 m) in 2 m Schritten zu unterteilen. In diesen Fällen müssen für eine Bewertung nach WRRL zusätzlich die Pflanzenmengen für den Gesamtbereich angegeben werden.

Bei der Rechenmethode kann die erste Tiefenstufe in der Regel watend mit dem Sichtkasten untersucht werden. Stichprobenartige Entnahmen mit Rechen bzw. Greifer dienen der Analyse der Artenzusammensetzung der Pflanzenpolster, z.B. in gemischten Characeenbeständen.

In tieferem Wasser wird mit dem Boot tiefenlinienparallel wiederholt hin und her gefahren. Soweit es die Transparenz des Gewässers zulässt, wird die Ausdehnung der Pflanzenbestände mit dem Sichtkasten oder alternativ schnorchelnd abgeschätzt. Aus jeder Tiefenstufe, in der sich die Pflanzenpolster nicht mit dem Sichtkasten erkennen ließen, werden mindestens vier Stichproben gezogen. Finden sich in der letzten Probe neue Arten, so werden weitere Proben entnommen, bis keine weiteren neuen Arten mehr festgestellt werden. Bei sehr flachen Gewässern, deren Tiefenstufen große Fläche einnehmen und die Vegetationsgrenze deshalb nicht ermittelt werden kann, oder deren gesamter Gewässergrund mit Makrophyten bedeckt ist, werden in der letzten Tiefenstufe mindestens 6 Stichproben entnommen. Finden sich in der letzten Probe neue Arten, so werden weitere Proben entnommen, bis keine weiteren neuen Arten mehr festgestellt werden. Die Kartierung kann bei ca. 200 m Entfernung vom Ufer beendet werden. Bei der Beprobung mit dem Rechen wird dieser stets vom tiefen in Richtung des flacheren Bereichs gezogen, um ein Abgleiten am Substrat zu verhindern.

Bei Kartierung der Makrophytenvegetation durch Taucher wird ebenfalls tiefenlinienparallel vorgegangen. Die gesamte Fläche eines Transekts wird unterteilt nach den Tiefenstufen abgesucht. Auch bei dieser Methode kann bei sehr flachen Gewässern, deren gesamter Gewässergrund mit Makrophyten bedeckt ist, die Untersuchung bei ca. 200 m Entfernung vom Ufer beendet werden falls keine neuen Arten mehr gefunden werden.

In jeder Tiefenstufe wird die beobachtete Häufigkeit jeder Art anhand der fünfstufigen Skala nach KOHLER (1978, Tabelle 11) bewertet und in den Aufnahmebogen (Abbildung 10 und Abbildung 11) eingetragen. Offensichtlich angeschwemmte Arten werden nicht berücksichtigt.

Es existieren auch andere Erhebungsmethoden, z.B. das Schätzen von Deckungsgraden in Prozent, wofür verschiedene Skalen vorhanden sind. Von der Verwendung dieser Methoden sowie einer Umrechnung der Deckungsprozente in die Abundanzstufen nach Kohler wird für das vorliegende Verfahren dringend abgeraten. Die beiden Schätzmethoden, Häufigkeitsklasse bzw. Deckungsgrad, stellen sehr unterschiedliche Herangehensweisen dar, z.B. wird die räumliche Ausdehnung der verschiedenen Taxa sehr unterschiedlich berücksichtigt. Das vorliegende Bewertungsverfahren wurde anhand von Daten entwickelt, welche mit der hier beschriebenen Kohler-Skala erhoben wurden, das Verfahren ist somit auf diese Werte abgestimmt. Es existieren verschiedene sehr unterschiedliche z.T. veröffentlichte Vorschläge zur Überführung von Deckungsgraden in Häufigkeitsklassen. Je nachdem, welche dieser Vorschläge bei einer

Umrechnung herangezogen wird, können die resultierenden Schätzklassen und damit die Bewertungsergebnisse mehr oder weniger stark differieren.

Die Tiefe der unteren Vegetationsgrenze ist ebenfalls im Protokoll festzuhalten. Gemeint sind dabei nicht die untersten Einzelvorkommen der Pflanzen sondern die Tiefe, in der die mehr oder weniger geschlossenen Bestände enden. Es ist sicherzustellen, dass es sich tatsächlich um die untere Vegetationsgrenze und nicht um eine Lücke im Bewuchs handelt. Im Fall einer Rechenkartierung kann zur Ermittlung der Vegetationsgrenze eine Unterwasserkamera und/oder ein Echolot herangezogen werden. Falls die Untergrenze der Vegetation von Faktoren beeinflusst wird, die nicht auf anthropogene Belastungen zurückzuführen sind, sondern z. B. durch Abbruchkanten, ist diese Ursache im Protokoll zu vermerken. Alle Angaben zu Vegetationsgrenzen, die nicht plausibel ermittelt werden können, sind mit Angabe von Gründen für die Unplausibilität zu notieren. Bei Seen, deren gesamter Gewässergrund von Makrophyten bedeckt ist, entspricht die Verbreitungsgrenze der Seetiefe.

Tabelle 11: Pflanzenmengenskala nach KOHLER (1978)

Pflanzenmenge	Beschreibung
1	sehr selten
2	selten
3	verbreitet
4	häufig
5	massenhaft

Zusätzlich werden Angaben zur Wuchsform (submerses oder emerses Wachstum bzw. schwimmend/flutend) der Pflanzen notiert. Arten, die sowohl submers als auch emers im Gewässer vorkommen können werden gegebenenfalls zweimal in die Artliste aufgenommen. Die am tiefsten vorkommende Art wird ebenfalls notiert.

Von schwer bestimmbaren Arten werden Proben entnommen, die unter dem Stereo- bzw. Lichtmikroskop nachbestimmt und gegebenenfalls herbarisiert werden. Moose können in so genannten "Mooskapseln" oder Briefumschlägen aufbewahrt und getrocknet werden.

Auch wenn es zur Bewertung der Stelle nicht erforderlich ist, ist die Aufnahme wesentlicher **Standortfaktoren** der zu untersuchenden Stellen dennoch empfehlenswert. Der zusätzliche Aufwand ist gering und in manchen Fällen lassen sich dadurch wertvolle Hinweise ableiten z. B. über natürliche Ursachen für das Fehlen der Vegetation an einer Stelle.

Zur Erhebung dient ein zweiteiliger Aufnahmebogen. In der Uferbeschreibung (Abbildung 10) werden Bewuchs, Nutzung, Uferbeschaffenheit sowie Besonderheiten erfasst. Die Litoralbeschreibung (Abbildung 11) berücksichtigt wesentliche gewässerinterne Faktoren bezogen auf die untersuchten Tiefenstufen. Erhoben wird die Zusammensetzung des Substrates und der Sedimentauflage, Strukturelemente, Aufwuchs, Gefälle, Besonderheiten sowie im Flachwasser die Beschattung (Tabelle 12). Ebenfalls auf Seite 2 des Kartierprotokolls muss auch eine Angabe zu einer eventuell vorhandenen Makrophytenverödung gemacht werden. Wenn eine solche besteht oder auch nur vermutet wird, müssen Gründe für die anthropogen bedingte Beeinträchtigungen, die diese Verödung bewirken, angegeben werden. Makrophyten können sowohl aus natürlichen Gründen als auch wegen anthropogener Beeinflussung an einer Gewässerstelle als Teilkomponente ausfallen. Alle Gründe für ein solches Fehlen der Organismengruppe sind für die Bewertung wichtig, mögliche Gründe sind in Kapitel 6.5.1.2, Tabelle 16 aufgeführt.

Tabelle 12: Beschattungsskala nach WÖRLEIN (1992)

Stufe	Beschreibung	Erläuterung
1	vollsonnig	Sonne von deren Auf- bis Untergang
2	sonnig	in der überwiegenden Zeit zwischen Sonnenauf- und Sonnenuntergang, immer jedoch in den wärmsten Stunden des Tages in voller Sonne
3	absonnig	überwiegend in der Sonne, in den heißesten Stunden jedoch im Schatten
4	halbschattig	mehr als die Tageshälfte und immer während der Mittagszeit beschattet
5	schattig	voller Schatten unter Bäumen

Feldprotokoll Makrophyten und bent	hische Diatomeen in Seen
Ufer & Flachwasser	
(Makrophyten- & Phytobenthos-Bewertung gemäß EG-WRRL;	grau unterlegte Felder optional)
Gewässername	Lage, Beschreibung des Transekts
Transekt-/Abschnitts-Nr. Bearbeiter	
Duck setallar No.	Exposition (Himmelsrichtung) Transektbreite
Probestellen-Nr. Befund-Nr.	m
	Film-/Foto-Nr Sichttiefe
Rechtswert (Ufer) Hochwert (Ufer)	m
Rechtswert (Vegetationsgrenze) Hochwert	Wasserstand niedrig mittel hoch
TV Platt	Diatomeenprobenahme erfolgt ja nein
TK-Blatt Datum	Wenn ja: beprobtes Substrat
Kartierungsmethode (bitte ankreuzen)	
	Toward Hardina 115 L 12 11
Tauchkartierung (gesamtes Seelitoral) Tauchkartierung (Transekte)	Transektkartierung mit Rechen/Greifer (nicht verwendetes Gerät bitte streichen)
	(ene ver mendetes der at bitte streterior)
Uferseaum Umfeld	Ufernutzung Ufersaum Umfeld
(bitte ankreuzen) (0-5 m) (5-20 m)	(bitte ankreuzen) (0-5 m) (5-20 m)
Wald	Industrieflächen/Werften
Gehölzsaum Gebüsch/Einzelgehölze	Hafen-/Steganlage Wiesenliegeplatz f. Boote
Röhricht/Großseggenried	Straße/Parkplatz/Rad-/Fußweg
Hochstauden-/Krautflur	geschlossenen Bebauung
Wiesen/Weiden (extensiv)	lockere Bebauung
Wiesen/Weiden (intensiv)	Parkanlage/Camping/Freibad
Ackerland/Garten Rasen-/Parkfläche	Lager-/Feuer-/Badeplätze Landwirtschaft
Pionier-/Trittvegetation/Brache	Landwinschaft
vegetationsfrei	

Uferbeschaffenheit (bitte ankreuzen)	Besonderheiten (x: einzeln xx: vermehrt xxx: häufig)
Steilufer, Böschung, Mauer (landseitig)	Treib-/Totholzansammlungen an Land
Flachufer (landseitig)	Müll, Unrat, Verunreinigung an Land
Transekt liegt innerhalb einer Bucht ja nein	Zufluss (Graben, Bach, Fluss) Schwemmfächer
Uferverbau (bitte ankreuzen)	Einleiter (Drainage, Rohre)
Steine/Blöcke	Boots-/Badestege
Beton-/Steinmauer	Reusen, Netzanlagen
Holz	
Stahl	
Beschattung im Flachwasserbereich nach WÖRLEIN (1	992)
8	zwischen Sonnenaufgang und Sonnenuntergang, immer
	unden des Tages in voller Sonne
3 absonnig überwiegend in der Sonne	, in den heißesten Stunden jedoch im Schatten
	nd immer während der Mittagszeit beschattet
5 schattig voller Schatten unter Bäun	nen
Sonstiges	
Bayerisches Landesamt für Umwelt August 2011	

Abbildung 10: Kartierprotokoll für Makrophyten & Phytobenthos in Seen (Seite 1)

Feldprotokoll Makrophyten Seen							
Litoral & Makrophyten (Makrophyten- & Phytobenthos-Bewertung gemäß EG	-WRF	RL)					
Gewässername			sekt-Nr.		Da	tum	
Sediment/Substrat	=	ь	esonder	مادة المادة			
(bitte ankreuzen; x: wenig; xx: häufig; xxx: massenhaft)				nerten euzen; x: w e	enig; xx: hä	ufig; xxx: m	assenhaft)
Tiefenstufe	, I				1	Tiefenstu	
0-1m 1-2m 2-4m > 4m Fels (anstehend)	H	C+	eilahhru	ch (> 0,5m		1-2m 2-	4m > 4m
Blöcke (>200 mm)	i I	-	hwingra				
Steine (63-200 mm)		R	öhrichtst	oppelfelde			
Grobkies (20-63 mm)		0000000		ende Vege	tat.		
Fein-/Mittelkies (2,0-20 mm) Sand	11		otholz rundwas	serzutritt			
Seekreide			ittschäd				
Sandmudde		0000000		n/-schäde	n		
Kalkmudde Detritusmudde	$\ \cdot \ $	1000000	iüll, Unra	at :ritusauflag	T-0		
Torfmudde			uschelse		2		
Sapropel] [To	eich-/Ma	alermusche	el		
Röhrichtstoppeln		0000000	reikantm		***************************************		+
Gefälle (f: flach; m: mittel; s:stark)			rünalger aualgen	I			
Tiefenstufe	. 1	1000000	nstige A	lgen			
0-1m 1-2m 2-4m > 4m							
	Ш						
Vegetationsgrenze m Vegetationsgrenze plausibel? ja nein				akrophyten gründung	iverodung	ја	nein
Artname			sub-/ emers	Häufigl 0-1 m	keit (1-5) 1-2 m	in der Tiet 2-4 m	enstufe >4 m
Attiante			CITICIS	0-1111	1-2 111	2-4111	24 111
						-	
						<u> </u>	
							\vdash
			-				
			<u> </u>			<u> </u>	
Raverisches Landesamt für Ilmwelt August 2011							

Abbildung 11: Kartierprotokoll für Makrophyten & Phytobenthos in Seen (Seite 2)

6.3.2 Diatomeen

6.3.2.1 Probenahme

Die Probenahme im Seelitoral entspricht weitgehend derjenigen in langsam fließenden Gewässern. Es wird die Besammlung von Hartsubstraten empfohlen, inbesondere von mittelgroßen bis großen Steinen. Dazu werden mindestens fünf, so weit wie möglich über den Uferabschnitt verteilte und unter normalen hydrologischen Bedingungen keiner Umlagerung unterworfene Steine vorsichtig in ihrer ursprünglichen Lage entnommen. Der Aufwuchs der Steinoberseite wird mit einer Zahnbürste, einem Teelöffel, Spatel oder ähnlichem Gerät abgekratzt und in ein beschriftetes Weithalsprobengefäß (siehe Absatz "Beschriftung des Probengefäßes", Seite 52) überführt. Aufgrund der potenziell hohen Gefahr der Verunreinigung sind die Zahnbürsten nur einmalig zu verwenden oder zwischen zwei Proben gründlich in einem Ultraschallbad zu reinigen. Generell ist darauf zu achten, dass die Probenahme im Freiwasserbereich erfolgt und nicht innerhalb dichter Makrophytenbestände. Der beprobte Tiefenbereich sollte 30 cm nicht unterschreiten, Seespiegelschwankungen sind bei der Terminierung der Probenahme zu berücksichtigen. Ist ausschließlich Sand oder Weichsediment vorhanden, werden die obersten Millimeter mit einem Löffel vorsichtig abgehoben. Grundsätzlich gilt, dass das standorttypische Bodensubstrat in repräsentativen Anteilen beprobt wird. Auf ungestörte Verhältnisse muss auch hier geachtet werden. Die Bewuchsdichte kann in den verschiedenen Gewässertypen sehr unterschiedlich sein, stellenweise ist ein Bewuchs makroskopisch nicht erkennbar, kann aber durch Betasten der Substratoberfläche erfühlt werden. In jedem Fall muss eine relativ große Menge entnommen werden – nach Absetzen im Probenbehältnis sollten mindestens 5 ml Diatomeensediment vorliegen. Die Fixierung der Proben erfolgt durch Ethanol. Die Probenahme wird auf dem Feldprotokoll dokumentiert (siehe. Abbildung 10 und Abbildung 11).

Beprobung von Weichsedimenten

Eine besondere Problematik für die Probenahme stellen Gewässer mit einem Sediment das natürlicherweise überwiegend aus Weichsubstrat besteht. Die Beprobung ist schwierig, Ersatzsubstrate wie z.B. Totholz oder Schilfhalme können in der Besiedelungsstruktur Abweichungen von der Besiedelung von Bodensubstrat aufweisen. Ein Vorschlag für eine alternative Vorgehensweise bei der Beprobung von Weichsubstraten wurde von Jörg Schönfelder (BB) in Zusammenarbeit mit Teilnehmern des Diatomeenworkshops 2010 in Berlin erarbeitet (siehe Kapitel 4.2). Die wesentlichen Punkte der Methoden werden hier vorgestellt. In diesem Zusammenhang wurden vergleichende Auswertungen des Landes Schleswig-Holstein bzgl. der Diatomeenpopulationen verschiedener Substrate in Aussicht gestellt. Die Ergebnisse werden bis Mitte 2011 erwartet und können in einer Fortschreibung der Handlungsanweisung ergänzt werden.

• Besammlung mit der Hand:

Gut entwickelte Diatomeenassoziationen auf Sand fallen durch ihre braune Pigmentierung (z.B. *Geissleria* spp. oder *Gomphonema* spp.) oder durch ihre puddingartige (z. B. *Fragilara pulchella*), leicht kohäsive (*Mastogloia* spp.) bis locker flockige (kohäsionslose) aber dann zumeist stark voluminöse Struktur (*Fragilaria brevistriata*, *F. construens*) auf. Diese gut entwickelten epipsammischen Assoziationen sind am besten mit einer scherenartigen

Schließbewegung von Mittelfinger und Ringfinger der horizontal auf das Substrat gleitenden Hand auf die Handfläche zu bringen, mit der Hand aus dem Flachwasser zu entnehmen und in das Probengefäß zu überführen.

Zur Beprobung epipsammischer Diatomeen kann ein Löffel o.ä. verwendet werden, sofern damit ein ausreichender Materialumfang (mindestens 5 ml sandfreier Feinschlamm nach einem Absetzvorgang von 10 Minuten) gewährleistet wird. Bei Einsatz von Werkzeugen ist deshalb ggf. die Zahl der Teilproben zu vervielfachen.

Die Methode eignet sich bei Beprobung in Wassertiefen bis ca. 1m (abhängig von der Köpergröße und der Armlänge des Probenehmers)

• Beprobung mit Saugvorrichtungen

Für die Entnahme von Aufwuchsdiatomeen auf dem Sediment eignen sich ebenfalls Saugoder Pumpsysteme. Mit einer großen Spritze (Infusionsspritze), auf die in einigen Fällen noch ein Schlauch aufgesetzt wird, können die oberen Diatomeen abgesaugt werden, ohne Sediment aufzuwirbeln. Mit der Verlängerung durch einen Schlauch können bei guten Bedingungen so Tiefen von 50-100 cm beprobt werden (Abbildung 7). In Süddeutschland wurden zur Beprobung von epipsammischen Diatomeengesellschaften auch bereits Handsaugpumpen mit zwischengeschalteter Filterkammer mit Erfolg eingesetzt.

• Beprobung mit Sedimentstechrohr

An Uferstellen, an denen eine Beprobung in Tiefen über ca. 1m durchgeführt werden müssen, z.B. vor einem geschlossenen Röhrichtbestand, empfiehlt sich die Verwendung eines Bootes und eines Sedimentstechrohres. Von dem gewonnenen Substrat werden die obersten Millimeter benötigt. Ideal hierfür ist die Verwendung einer Saugvorrichtung, wie oben beschrieben.

• Beprobung von Röhricht

An allen Messstellen, die folgende Voraussetzungen erfüllen, sollte zur Sicherheit eine Aufwuchsprobe von vorjährigen Röhrichthalmen entnommen werden:

- keine erfolgreiche Beprobung des Bodensubstrats möglich
- nach einer eingeschränkt erfolgreichen Probenahme ist unwahrscheinlich bzw. unsicher, ob die Diatomeenprobe vom Bodensubstrat eine gesicherte Bewertung ermöglicht
- an der Freiwasser-Röhricht-Kontaktzone vorjährige Röhrichthalme scheint eine ausgereifte Diatomeenassoziationen vorhanden zu sein
- die Bewertung der Uferstelle ist für die Bewertung des OWK von besonderem Interesse.
- Dazu sind ca. 8 12 senkrecht stehende, abgestorbene Röhrichthalme des Vorjahres mit ausgereiften Diatomeenassoziationen gezielt auszuwählen, ca. 30 cm unterhalb des Wasserspiegels abzuschneiden und in 1-Liter-Gefrierbeutel zu überführen.
 Im Gefrierbeutel werden die Halme gegeneinander abgerieben. Der halbflüssige Brei mit den Aufwuchsdiatomeen wird im Probengefäß mit Ethanol konserviert. Die Reste der Röhrichthalme werden verworfen.

Eine Beprobung von Röhricht bzw. die Einbeziehung einer Röhrichtprobe in die Auswertung sollte, bis genauere Ergebnisse vorliegen, nur dann erfolgen, wenn nach dem Aufschluss oder

der mikroskopischen Analyse festgestellt wird, dass die Probe von Bodensubstrat für die betreffende Messstelle keine gesicherte Bewertung nach dem Referenzartenmodul von PHYLIB zulässt. Oder wenn keine Möglichkeit zur Beprobung des Bodensubstrates besteht.

Probenahme in Talsperren

Diatomeengesellschaften sind hochsensible Kurzzeitindikatoren, die innerhalb weniger Wochen durch Änderungen der Artenzusammensetzung und Abundanzverschiebungen auf veränderte Umweltbedingungen reagieren (DIXIT et al. 1992). Die Durchführung einer Probenahme ist daher nur sinnvoll, wenn in den vorhergehenden vier Wochen stabile Umweltbedingungen vorlagen, weil sonst das Ergebnis der Trophieindikation von kurzzeitig wirkenden Veränderungen infolge erhöhter Erosion aufgrund von Stauspiegelschwankungen überlagert werden kann.

Da bei Talsperren der Stauspiegel abhängig von den aktuellen Anforderungen an die Bewirtschaftung schwankt, ist vor der Probenahme abzuklären, wie sich der Wasserspiegel in den vorhergehenden Wochen verändert hat. Dazu wurde ein Fragebogen entworfen (**Abbildung 12**), der zeitnah vor der Probenahme mit dem zuständigen Staumeister besprochen werden sollte. Falls nötig ist die Probenahmetiefe anzupassen (sofern dies die Sichttiefe des Gewässers zulässt) oder die Probenahme ist auf einen Zeitpunkt zu verschieben, dem mindestens vier Wochen mit stabilem (Niedrig-)Wasserstand vorausgingen.

Nach einem geringfügigen Anstieg des Wasserspiegels sollte auf eine größere Probenahmetiefe ausgewichen werden (sofern dies die Sichttiefe des Gewässers zulässt), um die Entnahme von Diatomeengesellschaften in frühen Sukzessionsstadien zu vermeiden. Diese sind durch ein Massenvorkommen von Pionierarten mit geringer ökologischer Aussagekraft wie *Achnanthes minutissima* oder *Cocconeis placentula* gekennzeichnet und liefern ungesicherte Indikationsergebnisse.

Nach einem geringfügigen Absinken des Wasserspiegels sollte der beprobte Tiefenbereich 30 cm nicht unterschreiten.

Insbesondere bei Talsperren, die zur Elektrizitätsgewinnung genutzt werden, kann zusätzlich zu jährlichen Schwankungen des Wasserstands der Stauspiegel regelmäßig, aber mitunter nur geringfügig schwanken (z. B. TS Hohenwarte, tägliche Schwankungen von ca. 30 bis 50 cm). Die in dieser Zone herrschenden osmotischen Druckschwankungen und der erhöhte Elektrolytgehalt können die Zusammensetzung der Diatomeengesellschaften stärker beeinflussen als der trophische Zustand des Gewässers. Auch hier ist, sofern es die Sichttiefe des Gewässers zulässt, bei der Probenahme auf einen Tiefenbereich unterhalb der Schwankungszone auszuweichen.

Di	atomeenprobenahme in Talsperren
	folgenden Fragen sind bei der Festlegung eines Probenahmetermins mit der zustän- en Stelle (Staumeisterei) abzuklären:
1.	Art der Nutzung:
	Hauptnutzung:
2.	Wird die Talsperre zur Elektrizitätsgewinnung genutzt? ja nein
\rightarrow	wenn ja, wie hoch sind Frequenz und Amplitude der infolge der Elektrizitätsgewinnung auftretenden Stauspiegelschwankungen?
3.	Ist das Befahren mit Motorboten erlaubt? ja nein
\rightarrow	wenn ja, gibt es spezielle Motorbootstrecken bzw. steile Prallufer mit Wellenschlagszone? Wie hoch ist die Amplitude?
4.	Liegt der Probenahmetermin in einer Zeit mit stabilen (Niedrig-) Wasserbedinungen? ja nein
\rightarrow	wenn nein, wie hat sich der Stauspiegel in den 4 Wochen vor der Probenahme verändert, z. B. infolge von Wasserabgabe oder durch Niederschläge?
5.	Mittlere jährliche Stauspiegelschwankung in m:
	Häufigkeit von Stauspiegelschwankungen:
	selten → wann:
	häufig → wann:
	wöchentlich täglich
	saisonal → wann:
	Amplitude der Stauspiegelschwankungen:
	< 0,5 m
	0,5 - 1 m
	1 - 2 m > 2 m
6.	Wie hoch ist die Sichttiefe im Uferbereich zum Zeitpunkt der Probenahme?
<u>.</u>	The floor lot die dionalere im dierbereien zum Zeitpunkt der i Toberlanne:
\Rightarrow	Die Probenahmetiefe ist an jeder Litoralstelle unter Berücksichtigung aller obigen Informationen so anzupassen, dass die Diatomeenprobe aus einem dauerhaft überfluteten Tiefenbereich mit ausreichender Lichtzufuhr stammt und in den vier Wochen vor der Probenahme immer mindestens 30 cm Wasserbedeckung aufwies!

Abbildung 12: Fragebogen für die Probenahme in Talsperren

Beschriftung des Probengefäßes:

- Das Probengefäß mit dem Diatomeensediment muss mindestens mit folgenden Informationen beschriftet werden:
- Codierung (eindeutige Kennung, die den Bezug zu allen Begleitinformationen sowie der präparierten Probe herstellt)
- Gewässer (eindeutige Kennung)
- Probestelle / Transekt (eindeutige Kennung)
- beprobtes Substrat
- Datum der Probenahme
- Probenehmer

Materialien zur Durchführung der Probenahme in Seen

- Topographische Karten 1:25 000 bzw. 1:50 000
- Feldprotokoll
- Exemplar der Handlungsanweisung
- Schreibmaterialien
- Wathose
- Weithalsflaschen oder -gläschen
- vorgefertigte Etiketten oder wasserfester Stift zur Beschriftung der Probengefäße
- Teelöffel, Spatel, Zahnbürsten o. ä.
- Ethanol
- Fotoausrüstung
- ggf. Sicherheitsausrüstung

6.3.2.2 Präparation

Materialien zur Durchführung der Präparation

Chemikalien

- Salzsäure 25% z. A.
- Schwefelsäure 95-97% z. A.
- Kaliumnitrat z. A.
- Ethanol

Weitere Ausstattung

- Abzug
- Heizplatte
- Schutzkleidung (Laborkittel, Brille, säurebeständige Laborhandschuhe)
- Bechergläser (hohe Form; Fassungsvermögen mindestens 100 ml)
- Uhrgläser mit Durchmesser entsprechend den Bechergläsern
- Becherglaszange
- Siedestäbchen

- ggf. Mörser und Pistille zum Zerreiben des Kaliumnitrats
- Spatel
- Kleines Kunststoffsieb mit Durchmesser entsprechend den Bechergläsern
- Universal-Indikatorpapier zur pH-Wert-Bestimmung
- Aqua dest.
- Spritzflasche
- Schraubdeckelgläschen mit Dichtung

Säurebehandlung

Die beschriebenen Kochvorgänge sind unter einem leistungsfähigen Abzug mit der gebotenen Vorsicht unter Einhaltung der Arbeitsschutzmaßnahmen durchzuführen. Schutzkleidung und Augenschutz sind obligatorisch.

Die Bestimmung der Diatomeen auf Artniveau erfolgt anhand der Strukturen des Kieselsäureskeletts und setzt die Herstellung von Dauerpräparaten voraus. Insbesondere kleinschalige Arten können nur im gereinigten Präparat nach Entfernen der organischen Zellbestandteile und weiterer, störender organischer Komponenten sicher zugeordnet werden. Zur Aufbereitung des Probenmaterials existieren verschiedene Verfahren, die je nach Beschaffenheit des Probenmaterials unterschiedlich geeignet sind. Eine Darstellung der häufigsten Aufbereitungstechniken findet sich in KRAMMER & LANGE-BERTALOT (1986). Zur Aufbereitung von Aufwuchsproben von Bodensubstraten (Steine, Kies, Schlamm), die einen hohen Anteil von organischem, nicht-diatomeenhaltigem Material enthalten können, bietet sich die Oxidation durch starke Säuren an, wobei die Aufbereitung in Schwefelsäure empfohlen wird.

Von jeder Probe wird ein Teil als Rückstellprobe zurückbehalten. Dazu ist es sinnvoll, die ganze Probenmenge durch Schütteln zu durchmischen und beim Überführen des Materials in ein Becherglas einen Rest (Rückstellprobe) im beschrifteten Gefäß übrig zu behalten.

Behandlung mit Salzsäure

Die Probe wird zunächst in Salzsäure gekocht, um die Bildung von Gips bei der sich anschließenden Behandlung mit Schwefelsäure auszuschließen. Bei einem hohen Wasseranteil lässt man die Proben zunächst 24 Stunden absetzen und dekantiert dann vorsichtig ab. Alternativ können die Proben bis auf eine geringe Wassermenge eingedampft werden. Anschließend wird die verbleibende Probenmenge durch Schütteln durchmischt und etwa 20 ml des Materials in einem beschrifteten Becherglas mit einem Fassungsvermögen von mindestens 100 ml mit 20 bis 40 ml verdünnter Salzsäure (25%) versetzt. Ist die Probe stark kalkhaltig, muss die Salzsäure vor dem Erhitzen mehrfach, in zunächst geringen Mengen zugegeben werden, da es zu einer starken Schaumentwicklung kommt. Durch 30-minütiges Kochen der mit einem Siedestäbchen bestückten und einem Uhrglas abgedeckten Probe werden anschließend die Karbonate gelöst, die Stielchen und Gallerten der Diatomeen aufgelöst und die Schalen vom Substrat getrennt. Weist die Probe einen hohen Sandanteil auf, muss mit starken Bewegungen des Becherglases gerechnet werden. Dabei wird es oftmals nötig, die Position des Becherglases auf der Heizplatte zu korrigieren. Verwendet wird hierzu eine Becherglaszange, wobei durch gründliches Abspülen der Zange in oder unter Leitungswasser Materialverschleppungen zwischen verschiedenen Proben verhindert

wird. Ebenso sind die Siedestäbehen zwischen verschiedenen Kochvorgängen sorgfältig zu reinigen.

Nach dem Kochen lässt man die Probe erkalten, siebt anschließend – soweit vorhanden – die groben Reste mithilfe eines kleinen Küchensiebs ab und füllt das Becherglas mit Leitungswasser auf. Um evtl. vorhandenen Sand, Kies oder kleinere Steine soweit wie möglich zu entfernen, wird die Lösung stark aufgerührt und der diatomeenhaltige Überstand nach einer etwa einminütigen Sedimentationszeit vorsichtig abdekantiert. Die Probe wird im Folgenden mehrmals vorsichtig auf etwa ein Drittel des Volumens abdekantiert und mit Leitungswasser gewaschen. Bewährt hat sich vierfaches Waschen und Abdekantieren, wobei die Sedimentationszeit zwischen den Waschvorgängen 24 Stunden nicht unterschreiten sollte. Alternativ kann die Probe zwischen den Waschvorgängen in einer Tischzentrifuge etwa 10 Minuten lang bei maximal 2000 Umdrehungen pro Minute (Upm) abzentrifugiert und der Überstand auf etwa ein Drittel abdekantiert oder mit einer Wasserstrahlpumpe entfernt werden. Diese Vorgehensweise erlaubt eine schnelle Aufbereitung, ist aber letztlich arbeitsintensiver und birgt die Gefahr, langschalige Diatomeen zu zerbrechen.

Behandlung mit Schwefelsäure

Die Probe wird durch Abdekantieren auf einen geringen Wasseranteil eingeengt, mit rund 20 -30 ml konzentrierter Schwefelsäure versetzt und zum Kochen gebracht. In Abständen von etwa 20 Minuten wird mit einem Spatel eine Prise Kaliumnitrat zugegeben bis sich die Probe entfärbt oder eine schwach gelbliche Farbe annimmt. Bei geringen Mengen organischer Bestandteile sind bereits wenige Zugaben von Kaliumnitrat ausreichend, enthält die Probe jedoch große Mengen, kann der Kochvorgang bis zu acht Stunden dauern. Nach dem Farbumschlag ist die Probe weitere 20 Minuten auf der Heizplatte zu belassen. Nach dem Abkühlen der Probe und dem Absetzen der Diatomeen bilden diese einen weißen bis gräulichen Bodensatz. Anschließend werden die Proben gewaschen, bis der Neutralpunkt (Indikatorpapier!) erreicht ist. Beim ersten Wässern der Probe nach dem Kochvorgang ist mit großer Vorsicht vorzugehen, da es zu heftigen Reaktionen kommen kann. Erfahrungsgemäß ist ein etwa achtmaliges Waschen erforderlich, wobei die Sedimentationszeit zwischen den Waschvorgängen 24 Stunden nicht unterschreiten sollte. Das letzte Wässern der Probe sollte mit destilliertem Wasser erfolgen. Die gereinigte Probe wird durch Schütteln des Becherglases durchmischt und in ein beschriftetes Schraubdeckelgläschen mit Dichtung überführt. Die Schraubdeckelgläschen sind zur Dokumentation in einem Lagerraum zu verwahren.

Beschriftung des Schraubdeckelglases:

Die Schraubdeckelgläschen mit der präparierten Diatomeensuspension muss mindestens mit folgenden Informationen beschriftet werden:

- Codierung (eindeutige Kennung, die den Bezug zu allen Begleitinformationen sowie zum Dauerpräparat herstellt)
- Gewässer (eindeutige Kennung)
- Probestelle / Transekt (eindeutige Kennung)
- beprobtes Substrat
- Datum der Probenahme
- präparierendes Labor / Bearbeiter

6.3.2.3 Herstellen von Dauerpräparaten

Materialien

Objektträger

- Deckgläser (empfohlen werden runde Deckgläser mit einem Durchmesser von 18 mm)
- rundgebogene Pinzette oder Deckglaspinzette
- Naphrax2
- Präparatekasten oder -mappe
- Etiketten

Die Deckgläschen sind vor dem Beschicken mit der Diatomeensuspension zu reinigen. Bewährt hat sich ein kurzes Eintauchen in eine stark spülmittelhaltige Lösung um Fettreste zu entfernen und die Oberflächenspannung zu vermindern. Die im Schraubdeckelglas enthaltene Suspension wird anschließend durch Schütteln durchmischt, unmittelbar anschließend wird eine geringe Menge mit einer sauberen Pipette entnommen und auf ein Deckgläschen aufgetropft. Um Konvektionen zu vermindern, ist der Tropfen möglichst flach zu halten. Bei stark konzentrierten Suspensionen ist es oftmals erforderlich, diese in einem Uhrgläschen mit destilliertem Wasser zu verdünnen. Der Grad der Verdünnung richtet sich nach der gewünschten Dichte der Schalen im Präparat und ist abhängig von der Menge der verbliebenen anorganischen Komponenten. Probleme ergeben sich häufig durch hohe Gehalte aus der Probe nicht entfernbarer mineralischer Bestandteile (Schluff- und Tonpartikel), die im Schraubdeckelglas optisch von den Diatomeen nicht zu unterscheiden sind. Es ist daher ratsam, unterschiedlich verdünnte Präparate anzufertigen.

Die optimale Schalendichte liegt vor, wenn nach Durchmusterung eines oder mehrerer, ganzer Transektstreifen bei 1000facher Vergrößerung die erforderliche Anzahl von 500 Schalen (siehe unten) erreicht ist. Dies begründet sich durch eine durch Konvektion im Tropfen auf dem Deckglas hervorgerufene teilweise Entmischung der Diatomeenschalen. So können bei starken Konvektionsströmen kleinschalige, leichte Formen in der Deckglasmitte konzentriert sein, wohingegen sich die großen, schweren Schalen überproportional häufig in den Randbezirken finden. Diesem Phänomen wird durch Zählung ganzer Transekte entgegengetreten.

Um Kontaminationen zu vermeiden, ist streng darauf zu achten, die verwendeten Pipetten zwischen der Behandlung verschiedener Proben unter fließendem Wasser zu reinigen.

Ist das Diatomeen-Material über Nacht luftgetrocknet, wird ein beschrifteter, fettfreier Objektträger mit einem Tropfen Naphrax² versehen und das Deckglas mit der beschickten Seite nach
unten mit einer Pinzette vorsichtig aufgelegt. Um das Lösungsmittel auszutreiben, wird das Präparat anschließend über einem Bunsenbrenner bei kleiner Flamme erhitzt, bis es etwa fünf Sekunden lang Blasen wirft, und sofort erschütterungsfrei auf einer glatten, kalten Oberfläche gelagert,
bis es abgekühlt ist. Naphrax enthält Toluol, das beim Enthitzen entweicht, und darf daher nur mit
großer Vorsicht gehandhabt werden. Das Austreiben des Toluols kann alternativ auf einer
Heizplatte erfolgen. Mithilfe einer Pinzette ist anschließend zu überprüfen, ob das Deckglas fest
mit dem Objektträger verbunden ist. Gegebenfalls muss der Vorgang wiederholt werden.

² Naphrax kann über das Internet unter http://www.brunolmicroscopes.co.uk bezogen werden und wird vom englischen Hersteller ohne Zugabe von Toluol verschickt. Zur Verwendung muß nach Anleitung des Herstellers Toluol zugesetzt werden, wodurch eine dünnflüssige Konsistenz entsteht. Bei häufigem Gebrauch und/oder unzureichendem Verschluß wird Naphrax zähflüssig und muß durch erneute Zugabe von Toluol verdünnt werden.

Das Präparat kann danach sofort unter dem Lichtmikroskop ausgewertet werden und ist bei entsprechender Lagerung über Jahrzehnte hinweg haltbar. Von großer Wichtigkeit ist die Anlage einer Belegsammlung mit detaillierter Beschriftung der Objektträger mit Angabe des Gewässers, der Lage der Stelle (falls vorhanden mit Rechts- und Hochwerten), des beprobten Substrats, des Datums sowie gegebenenfalls mit Codierungen, die den Bezug zu anderen Informationsquellen herstellen.

Nach Herstellung der Dauerpräparate wird die im Schraubdeckelglas verbliebene Diatomeensuspension durch Zugabe von Ethanol zur konserviert. Um ein Eintrocknen der Probe zu verhindern, werden vor der Einlagerung zusätzlich fünf bis zehn Tropfen Glycerin zugegeben.

Beschriftung des Objektträgers:

Die Objektträger müssen mindestens mit folgenden Informationen beschriftet werden:

- Codierung (eindeutige Kennung, die den Bezug zu allen Begleitinformationen sowie der präparierten Probe herstellt)
- Gewässer (eindeutige Kennung)
- Probestelle / Transekt (eindeutige Kennung)
- Datum der Probenahme
- taxonomischer Bearbeiter

6.3.2.4 Mikroskopische Auswertung

Um repräsentative Verteilungen zu erhalten, werden im Streupräparat bei 1000- bis 1200-facher Vergrößerung 500 Diatomeenobjekte auf Artniveau bestimmt, teilweise ist die Differenzierung von Varietäten erforderlich (s. Kapitel 6.5.2). Bei der Zählung sind sowohl die in Schalenansicht liegenden Arten als auch die Gürtelbänder zu erfassen. Da bei in Schalenansicht liegenden Vertretern der Naviculaceae oftmals nicht sicher erkennbar ist, ob es sich um einzelne Schalen oder um gesamte Frusteln handelt, wird bei der Zählung grundsätzlich nicht zwischen Einzel- und Doppelschalen unterschieden, sondern es werden Objekte erfasst. Frusteln, deren Schalen bei der Präparation nicht getrennt wurden, gehen folglich als Einheit in die Zählung ein. Nicht bestimmbare Gürtelbänder sind auf Gattungsniveau zuzuordnen, falls möglich zu gruppieren und in Größenklassen zu trennen. Nach Abschluss der Zählung werden diese nach dem prozentualen Verhältnis der in Frage kommenden determinierten Arten auf diese verteilt. Bruchstücke werden nur dann berücksichtigt, wenn ihre Größe die Hälfte der Schalenfläche übersteigt. Anschließend wird das Präparat nach bisher nicht erfassten Taxa durchmustert. Dieser Schritt dient v. a. der Absicherung des Teilmoduls "Referenzartenquotient" (siehe Kapitel 6.5.2.3). Der zeitliche Orientierungswert für diese anschließende Durchmusterung beträgt 30 Minuten. Die Darstellung der Häufigkeiten erfolgt in prozentualen Anteilen, Taxa die bei der nachträglichen Durchmusterung gefunden wurden werden mit der Häufigkeit "0" aufgeführt. Die Zähldaten sind mit Angabe der DV-Nummern nach MAUCH et al. (2003) als Excel- oder Access-Dateien bzw. in spezifischen Datenbanken zu dokumentieren.

Bei der Zählung werden ausschließlich benthische sowie benthisch/planktische Taxa erfasst. Ausschließlich planktisch lebende Formen werden nicht berücksichtigt. Da verlässliche Literaturangaben zur Lebensweise der centrischen Taxa nicht durchgängig vorhanden und zum Teil wider-

sprüchlich sind, werden mit Ausnahme von *Melosira varians* Centrales bei der Zählung nicht erfasst. Gleiches gilt für pennate Taxa mit obligatorisch planktischer Lebensweise.

Um die Vergleichbarkeit der Zähl- und Bewertungsergebnisse verschiedener Bearbeiter zu gewährleisten, wurde eine Auschlussliste der bei der mikroskopischen Auswertung nicht zu berücksichtigenden planktischen pennaten Diatomeentaxa erstellt (Tabelle 13). Der Vollständigkeit halber werden auch marine und Brackwasserarten mit angegeben. Bei der Berechnung mit der Phylib-Bewertungssoftware werden Proben mit einem Anteil planktischer Taxa >5% aus der Bewertung ausgeschlossen.

Die Miterfassung von Centrales führt dazu, dass sich die Abundanzwerte für die benthischen Taxa ändern. Das kann sich auch auf die Bewertung eines Transektes auswirken und die Vergleichbarkeit der Ergebnisse unterschiedlicher Bearbeiter vermindern. Zudem sorgt das im DV-Tool vorhandene Sicherungskriterium 98% < Gesamthäufigkeit < 102% dafür, dass für Datensätze, die einen hohen Anteil Centrales enthalten, ein ungesichertes Bewertungsergebnis ausgegeben wird. Ursache für die ungesicherte Bewertung ist in diesen Fällen das methodische Vorgehen bei der mikroskopischen Auswertung.

Für eine Bewertung unabdingbar ist eine ausreichende Bestimmungstiefe. In einigen Fällen geht diese über die Stufe "Art" hinaus, teilweise müssen Varietäten und Unterarten ermittelt werden. Die benötigte Bestimmungstiefe kann im Einzelfall den Indikationslisten (siehe auch die jeweils aktuelle Softwareversion) entnommen werden.

Tabelle 13: Ausschlussliste der bei der mikroskopischen Auswertung nicht zu berücksichtigenden pennaten Diatomeentaxa mit planktischer Lebensweise (V = Verbreitung, m = marin, b = Brackwasser, lfd-Nr. = laufende Nummer)

lfd-Nr.	DV-Nr.	Taxon	Autor	V
1	6142	Asterionella	HASSALL	
2	6050	Asterionella formosa	HASSALL	
3	6863	Asterionella formosa var. acaroides	LEMMERMANN	
4	16820	Asterionellopsis	ROUND	m
5	16797	Asterionellopsis glacialis	(CASTRACANE) ROUND	m
6	16819	Asterionellopsis kariana	(GRUNOW) ROUND	m
7	26929	Cylindrotheca closterium	(EHRENBERG) REIMANN & J.C.LEWIN	m, b
8	16831	Delphineis surirella	(EHRENBERG) G.W.ANDREWS	m
9	6075	Fragilaria crotonensis	KITTON	
10	6215	Fragilaria reicheltii	(VOIGT) LANGE-BERTALOT	
11	6410	Fragilaria ulna angustissima-Sippen	sensu KRAMMER & LANGE-BERT.	
12	6023	Nitzschia acicularis	(KUETZING) W.SMITH	
13	16856	Nitzschia acicularis-Formenkreis		
14	16600	Nitzschia acicularis var. closterioides	GRUNOW	
15	16394	Nitzschia behrei	HUSTEDT	b
16	16398	Nitzschia closterium	(EHRENBERG) W.SMITH	m, b
17	6806	Nitzschia fruticosa	HUSTEDT	
18	16847	Pseudo-nitzschia	H.PERAGALLO	m
19	16659	Rhaphoneis	EHRENBERG	m
20	16812	Rhaphoneis amphiceros	(EHRENBERG) EHRENBERG	m
21	6695	Surirella splendida	(EHRENBERG) KUETZING	
22	6074	Tabellaria fenestrata	(LYNGBYE) KUETZING	
23	16849	Thalassionema nitzschioides	(GRUNOW) GRUNOW ex HUSTEDT	m

57

Als Standard-Bestimmungsliteratur dient der Bestimmungsschlüssel von HOFMANN et al. (2011). Ergänzend sollte die weiterführende Literatur herangezogen werden. Wichtige Werke sind:

KRAMMER (2000, 2002, 2003)

KRAMMER (1997 a & b)

KRAMMER & LANGE-BERTALOT (1986-1991, 2004)

LANGE-BERTALOT & METZELTIN (1996)

LANGE-BERTALOT & MOSER (1994)

LANGE-BERTALOT (1993, 2001)

LEVKOV (2009)

REICHARDT (1999)

In den salzbeeinflussten Gewässerypen des Norddeutschen Tieflandes muß zusätzlich die Arbeit von WITKOWSKI & LANGE-BERTALOT (2000) verwendet werden.

6.3.2.5 Kriterien der Nichtauswertbarkeit und Nichtbewertbarkeit

Die Kieselalgen sind, soweit möglich, bis auf das taxonomische Niveau zu bestimmen, das in den Indikatorlisten vorgegeben ist (siehe Kapitel 6.5.2). Proben können zur Bewertung nicht herangezogen werden, wenn der Anteil nur bis zur Gattung bestimmter, nicht bestimmbarer (sp., spp.) und/oder nicht eindeutig bestimmbarer Formen (cf., aff.) einen Wert von 5 % überschreitet. Die ökologischen Präferenzen der Taxa unterscheiden sich zumeist auf Artebene, z.T. aber auch auf Unterart- oder Varietätenebene. Gattungen oder Sammelgruppen können daher nicht mit Indikatorwerten versehen werden. Bei einem größeren Anteil von Individuen, die nicht bis auf eine taxonomisch ausreichende Ebene bestimmt wurden, ist von einer Verfälschung des Bewertungsergebnisses auszugehen.

Sind auch nach maximaler Einengung des Probenmaterials nur sehr geringe Diatomeenmengen enthalten, deutet dies auf Fehler bei der Probenahme oder auf eine schlechte Wahl des Probenahmezeitunktes hin (siehe Kapitel 6.3). Als Kriterium der Auswertbarkeit wird eine Mindestzahl von 50 Objekten in einem Transekt bei 1000facher Vergrößerung und einem Deckglasdurchmesser von 18 mm vorgeschlagen. Bei zu vermutender Nichtauswertbarkeit ist die Diatomeendichte durch Testzählung eines Transektstreifens zu ermitteln. Nach Erfahrungswerten kann auch bei sorgfältiger Vorgehensweise der Anteil nicht auswertbarer Proben bis zu 3 % betragen.

Ein weiteres Ausschlusskriterium stellt eine hohe Zahl aerophiler Diatomeen in der Probe dar, die sich insbesondere bei steigenden Abflüssen durch Beprobung erst kürzlich überfluteter Bereiche ergeben kann. Übersteigt der Anteil aerophiler Taxa (Tabelle 18) den Wert von 5%, muss von einem starken aerischen Einfluss ausgegangen werden, der die Bewertung überlagert, zumindest aber stark beeinflusst.

6.4 Bestimmung des Gewässertyps

Die für das Bewertungsverfahren notwendige Einordnung der Seestellen in die biozönotische Typologie ist mit der Seentypologie nach MATHES et al. 2002 sehr gut in Einklang zu bringen. Eine Gegenüberstellung der Typologien findet sich getrennt für die Gruppe der natürlichen Seen

einerseits in Tabelle 14 und für die Gruppe der künstlichen und erheblich veränderten Seewasserkörper andererseits in Tabelle 15.

Die Typzuordnung hat großen Einfluss auf die Bewertung eines Gewässers und ist deshalb stets kritisch zu überprüfen. In Zweifelsfällen sollte die Bewertung eines Gewässers für verschiedene Typen durchgeführt und anhand der vorhandenen Hintergrundinformationen diskutiert werden. In begründeten Einzel- bzw. Sonderfällen muss von der rein schematischen Typzuordnung abgewichen werden.

Tabelle 14: Gegenüberstellung der biozönotischen Seentypologie Makrophyten & Phytobenthos und der Seentypologie von Mathes et al.(2002) für **natürliche Seewasserkörper**

Typen (MATHES et al. (2002))	Mak	ropyhyten-Typologie	Dia	atomeen-Typologie
2, 3, 4	AK(s)	Stellen karbonatischer, geschichteter Wasserkörper der Alpen und des Alpenvorlandes	karbonatischer, nteter Wasserkörper der nd des Alpenvorlandes der karbonatischen ein (AKs) karbonatischen ein (AKs) karbonatischer, tischer Wasserkörper der nd des Alpenvorlandes sillikatisch geprägter körper der Mittelgebirge Tieflandes stabil geschichteter atischer Wasserkörper des les mit relativ großem EZG Stabil geschichteter titscher Wasserkörper des les mit relativ kleinem EZG Stabil geschichteter titscher Wasserkörper des les mit relativ kleinem EZG Stabil geschichteter titscher Wasserkörper des les mit relativ kleinem EZG DS 13.1 Geschicht Verweilze und einen DS 13.1 Geschicht Verweilze Stabil geschichteter titscher Wasserkörper des les mit relativ kleinem EZG DS 13.1 DS 13.1 Geschicht Verweilze Nordwest Selegen DS 13.2 Flussseen unter 30.7 Ungeschichter Wasserkörper des les Ungeschichter Verweilze und einen DS 11 Ungeschichter Wasserkörper des les Ungeschie Verweilze und einen Ungeschie Verweilze und einen Ungeschie Verweilze und einen Ungeschie Verweilze Under 30.7 DS 14 Ungeschie	Seen der Alpen und des Alpenvorlandes mit einer Volumenentwicklung > 0,4
2,3,1	7 (11(3)	(AK) incl. Untertyp extrem steile Stellen der karbonatischen Alpenseen (AKs)		Seen der Alpen und des Alpenvorlandes mit einer
1	АКр	Stellen karbonatischer, polimiktischer Wasserkörper der Alpen und des Alpenvorlandes	D3 1.2	Volumenentwicklung < 0,4
9	MTS	Stellen silikatisch geprägter Wasserkörper der Mittelgebirge und des Tieflandes	DS 9	Silikatische Seen der Mittelgebirge
10	TKg10	Stellen stabil geschichteter	Mittelgebirge Geschichtete Seen mit ein Verweilzeit zwischen zehr und einem Jahr (P-limitier Geschichtete Seen mit ein Verweilzeit unter einem Ja limitiert) DS 13.1 Geschichtete Seen mit ein Verweilzeit über zehn Jah	Geschichtete Seen mit einer Verweilzeit zwischen zehn Jahren und einem Jahr (P-limitiert)
10	TKgTU	Tieflandes mit relativ großem EZG	DS 10.2	Geschichtete Seen mit einer Verweilzeit unter einem Jahr (N- limitiert)
			DS 13.1	Geschichtete Seen mit einer Verweilzeit über zehn Jahren
13	TKg13	Stellen stabil geschichteter karbonatischer Wasserkörper des Tieflandes mit relativ kleinem EZG	DS 13.1 _{Nordwest}	Geschichtete Seen mit einer Verweilzeit über zehn Jahren, im Nordwesetn Deutschlands gelegen
			DS 13.2	Geschichtete Seen mit einer Verweilzeit zwischen zehn Jahren und einem Jahr (P-limitiert)
11	-		DS 11	Ungeschichtete Seen mit einer Verweilzeit über 30 Tagen
12	ТКр	Stellen polymiktischer karbonatischer Wasserkörper des Tieflandes	DS 12	Flussseen mit einer Verweilzeit unter 30 Tagen
14			DS 14	Ungeschichtete Seen mit einer Verweilzeit über zehn Jahren

Makrophyten & Phytobenthos in Seen

August 2011

Tabelle 15: Gegenüberstellung der biozönotischen Seentypologie und der Seentypologie von MATHES et al.(2002) für künstliche und erheblich veränderte Seewasserkörper.sowie Seen des karbonatischen Mittelgebirges

Typ (Mathes et al. 2002)	Typisierung künstlicher und erheblich veränderter Seen sowie der natürlichen Seen im karbonatischen Mittelgebirge Makrophyten	Makrophyten- typ	Grup- pierung nach Diato- meen	Typisierung künstlicher und erheblich veränderter Seen sowie der natürlichen Seen im karbonatischen Mittelgebirge Diatomeen	Diatomeentyp	Beispiele künstlicher und erheblich veränderter Gewässer
Ökoregion	Alpen und Alpenvorland		-			
1, 2, 3, 4	karbonatische Gewässer der Alpen und des Alpenvorlands mit einer Volumenentwicklung < 0,4	АКр	DS 1.2	karbonatische Gewässer der Alpen und des Alpenvorlands mit einer Volumenentwicklung < 0,4	DS 1.2	Grüntensee, Rottachsee, Langwieder See, Lerchenauer See
2, 3, 4	karbonatische Gewässer der Alpen und des Alpenvorlands mit einer Volumenentwicklung > 0,4	AK(s)	DS 1.1	karbonatische Gewässer der Alpen und des Alpenvorlands mit einer Volumenentwicklung > 0,4	DS 1.1	Walchensee
Ökoregion	Mittelgebirge (incl. Oberrheinisches Tiefland)					
			DS 5	karbonatische geschichtete Gewässer des Mittelgebirges mit großem Einzugsgebiet (Volumenquotient > 1,5)	DS 5	TS Lichtenberg, TS Saidenbach TS Hohenwarte, Wölfersheimer See
5	karbonatische geschichtete Gewässer des Mittelgebirges mit großem Einzugsgebiet (Volumenquotient > 1,5) -> Bewertbarkeit von Talsperren muss noch geprüft	MKg	ALT/ BS Aue (VQ>1,5	Altrheine und Baggerseen in der Rheinaue ohne Rheinanbindung, geschichtet, großes EZG	DS 5.1	Vorderer Roxheimer Altrhein Baggersee im Ochsenfeld
	werden		ALT /BS gRh	Altrheine und Baggerseen in der Rheinaue mit Rheinanbindung, geschichtet	DS 5.2	Angelhofer Altrhein, Otterstädter Altrhein, Kiefweiher, Schäferweiher, Landeshafen Wörth
	karbonatische ungeschichtete Gewässer des		DS 6	karbonatische ungeschichtete Gewässer des Mittelgebirges mit großem Einzugsgebiet (Volumenquotient > 1,5)	DS 6	Mainflingener See, Werratalsee TS Pirk, Twistetalsperre
6	Mittelgebirges mit großem Einzugsgebiet (Volumenquotient > 1,5) -> Bewertbarkeit von Talsperren muss noch geprüft	МКр	ALT nat	natürliche Altrheine, ungeschichtet	DS 6.1	Altrhein Bienen-Praest, Bienener Altrhein, Altrhein Xanten, Neuhofener Altrhein
	werden		ALT /BS pRh	Altrheine und Baggerseen in der Rheinaue mit Rheinanbindung, ungeschichtet	DS 6.2	Berghäuser Altrhein Lingenfelder Altrhein
7	karbonatische geschichtete Gewässer des Mittelgebirges mit kleinem Einzugsgebiet	AAK	DS 7	karbonatische geschichtete Gewässer des Mittelgebirges mit kleinem Einzugsgebiet (Volumenquotient < 1,5)	DS 7	Borkener See, Exbergsee Hellkopfsee, Sorpetalsperre
/	(Volumenquotient < 1,5) -> Bewertbarkeit von Talsperren muss noch geprüft werden	MKg	ALT/ BS Aue (VQ<1,5	Altrheine und Baggerseen in der Rheinaue ohne Rheinanbindung, geschichtet, kleines EZG	DS 7.1	Silbersee

August 2011 Makrophyten & Phytobenthos in Seen

Typ (Mathes et al. 2002)	Typisierung künstlicher und erheblich veränderter Seen sowie der natürlichen Seen im karbonatischen Mittelgebirge Makrophyten	Makrophyten- typ	Grup- pierung nach Diato- meen	Typisierung künstlicher und erheblich veränderter Seen sowie der natürlichen Seen im karbonatischen Mittelgebirge Diatomeen	Diatomeentyp	Beispiele künstlicher und erheblich veränderter Gewässer
)			
8	silikatische geschichtete Gewässer des Mittelgebirges mit großem EZG (VQ > 1,5) -> Bewertbarkeit von Talsperren muss noch geprüft werden	MTS	DS 8	silikatische geschichtete Gewässer des Mittelgebirges mit großem Einzugsgebiet (Volumenquotient > 1,5)	DS 8	Oleftalsperre, TWT Mauthaus Eixendorfer See
9	silikatische geschichtete Gewässer des Mittelgebirges mit kleinem Einzugsgebiet (Volumenquotient < 1,5) -> Bewertbarkeit von Talsperren muss noch geprüft werden	MTS	DS 9	silikatische geschichtete Gewässer des Mittelgebirges mit kleinem Einzugsgebiet (Volumenquotient < 1,5)	DS 9	Förmitzstausee
-	silikatische ungeschichtete Gewässer des Mittelgebirges	-	-	silikatische ungeschichtete Gewässer des Mittelgebirges	-	Dreifelder Weiher Wiesensee (RP) Krombachtalsperre
Ökoregion I	Norddeutsches Tiefland					
10	karbonatische geschichtete Gewässer des Norddeutschen Tieflands mit großem Einzugsgebiet (Volumenquotient > 1,5)	TKg10	DS 10.1	karbonatische geschichtete Gewässer des Norddeutschen Tieflands mit großem Einzugsgebiet (VQ > 1,5)	DS 10.1	SP Borna SP Lohsa Friedersdorf Olbersdorfer See
11	karbonatische ungeschichtete Gewässer des Nord- deutschen Tieflands mit großem Einzugsgebiet (VQ > 1,5) und einer Verweildauer von > 30 Tagen	ТКр	DS 11	karbonatische ungeschichtete Gewässer des Nord- deutschen Tieflands mit großem Einzugsgebiet (VQ > 1,5) und einer Verweildauer von > 30 Tagen	DS 11	Gr. Teich Torgau TS Quitzdorf SP Radeburg 2
12	karbonatische ungeschichtete Gewässer des Nord- deutschen Tieflands mit großem EZG (VQ > 1,5) und einer Verweildauer von 3 bis 30 Tagen Bewertbarkeit von Talsperren muss noch geprüft werden	ТКр	DS 12	karbonatische ungeschichtete Gewässer des Nord- deutschen Tieflands mit großem Einzugsgebiet (Volumenquotient > 1,5) und einer Verweildauer von 3 bis 30 Tagen	DS 12	Muldestausee
13	karbonatische geschichtete Gewässer des Norddeutschen Tieflands mit kleinem Einzugsgebiet (Volumenquotient < 1,5)-> Bewertung wie natürliche Seen des Makrophytentyps TKg13	TKg13	DS 13.2	karbonatische geschichtete Gewässer des Norddeutschen Tieflands mit kleinem Einzugsgebiet (Volumenquotient < 1,5)	DS 13.2	Lucherberger SeeMarkkleeberger See Xantener Nordsee
14	karbonatische ungeschichtete Gewässer des Norddeutschen Tieflands mit kleinem Einzugsgebiet (Volumenquotient < 1,5)	ТКр	DS 14	karbonatische ungeschichtete Gewässer des Norddeutschen Tieflands mit kleinem Einzugsgebiet (Volumenquotient < 1,5)	DS 14	Lohheidesee Otto-Maigler- SeeNeustädter See
Ökoregionu	nabhängig					
-	saure und versauerte Gewässer-> zusätzlich ergänzendes Modul Versauerung	MTS mit Säuremodul	DS sauer	saure und versauerte Gewässer	DS s	Brückelsee, Murnersee, Steinberger See, Knappensee

6.5 Bewertung

6.5.1 Makrophyten

6.5.1.1 Sicherungskriterien

Für die Entwicklung des Verfahrens für künstliche und erheblich veränderte Seen wurden sehr junge Gewässer und Gewässer mit instabilen ökologischen Verhältnissen (z.B. laufendem Kiesabbau) ausgeschlossen. In solchen Gewässern kann die Makrophytenbesiedlung durch Eintrübung oder Nährstoffbindung (Adsorption an mineralischen Partikeln z.B. Eisenhydroxiden) gehemmt werden. Ebenso können Rutschungen oder Fremdwassereinleitungen aus aktivem Bergbau zu Eintrübungen führen. Wie auch andere **junge Gewässer** (z.B. Tagebauseen), befinden sich diese Seen noch nicht in einem ökologisch stabilen Zustand, die Sukzession der Makrophytenbesiedlung ist noch nicht abgeschlossen. Für die Ermittlung plausibler Bewertungsergebnisse sollten deshalb nur Daten aus Gewässern verwendet werden, in denen zum Untersuchungszeitpunkt stabile ökologische Verhältnisse herrschen.

Um eine gesicherte Bewertung zu erhalten müssen zudem folgende Kriterien erfüllt sein:

- Die Gewässeroberfläche des untersuchten Gewässers muss mindestens 50 ha (0,5 km²) betragen.
 - Für kleinere Gewässer wurde das Verfahren nicht entwickelt und somit auch nicht überprüft bzw. getestet.
- In Kiesgruben/Baggerseen muss die Auskiesung abschlossen sein.
- Das Gewässer muss ein Mindestalter von 15 Jahren ab erreichen des Endwasserspiegels aufweisen.
- Die sommerlichen Stauspiegelschwankungen dürfen nicht mehr als 3 m betragen.
- Anzahl und Auswahl der Untersuchungstransekte erfüllen die von SCHAUMBURG et al. (2007a) beschriebenen Voraussetzungen.
- der Anteil der eingestuften Arten muss mehr als 75% der Gesamtquantität der submersen Arten erreichen.
 - Bei einem größeren Anteil nicht indikativer (d. h. nicht eingestufter) Arten ist eine Verfälschung des Indexwertes zu erwarten. Darüberhinaus dient diese Anforderung auch der Qualitätssicherung. Es wird so verhindert, dass z.B. bei zu vielen Bestimmungen nur auf Gattungsebene (etwa durch schlechte Wuchsbedingungen wie z.B. Verschlammung, die zu Kümmerwuchs der Arten führen) ein gesicherter Index errechnet wird.
- die Gesamtquantität der submersen Arten muss mindestens 55 (Typ AK(s), MKg, TKg10, TKg13 und MTS) bzw. mindestens 35 (Typ AKp, MKp und TKp) betragen.
 Eine Gesamtquantität von 55 wird erreicht, wenn mindestens zwei Arten mit 3 (verbreitet, Quantität 3³=27) plus eine Art mit mindestens Pflanzenmenge 1 (sehr selten, Quantität 1³=1) vorkommen. Die Untergrenze von 35 bedeutet, dass mindestens eine Art mit der Abundanz 3 (verbreitet, Quantität: 3³=27) plus eine Art mit 2 (selten, Quantität: 2³=8) oder mindestens fünf Arten mit 2 (selten, Quantität: 5 * 2³ = 40) an der Untersuchungsstelle vorkommen müssen.

Für die Makrophytentypen AKp, MKp und TKp wurde eine geringere Grenze gewählt, weil hier berücksichtigt wurde, dass ungeschichtete Gewässer oft relativ flach sind und dann nicht alle vier im Bewertungsverfahren angewandten Tiefenstufen unterschieden werden können. Die Summe der über die Tiefenstufen aufsummierten Quantitäten kann somit geringer ausfallen

• der Anteil von *Nuphar lutea, Nymphaea alba* und *Persicaria amphibia* an der Gesamtquantität muss unter 80% liegen

Diese Schwimmblattpflanzen werden als wichtige Bestandteile der aquatischen Vegetation in der Liste der Indikatorarten geführt. Extreme Eutrophierung kann jedoch dazu führen, dass aufgrund der starken Gewässertrübung submerse Arten zurückgehen und nur noch Schwimmblattpflanzen im Gewässer gefunden werden. Daher sind Stellen mit Vorkommen der drei Arten von mindestens 80 % der Gesamtquantität auf Verödung der submersen Vegetation zu überprüfen. Liegt keine Makrophytenverödung vor, muss der Index als nicht gesichert gelten, da der RI-Wert durch das massenhafte Auftreten dieser drei Arten verfälscht bzw. in seiner Aussagekraft geschwächt wird.

Trifft mindestens eines dieser Kriterien nicht zu, so gilt die Bewertung der Teilkomponente Makrophyten als nicht gesichert und geht nicht in die Berechnung der Gesamtbewertung ein. Der errechnete Wert hat lediglich informativen Charakter.

Eine Ausnahme bildet die Makrophytenverödung. Wird aufgrund einer der beiden zuletzt genannten Sicherungskriterien die Bewertung als ungesichert angesehen, so muss auf das Vorliegen einer Makrophytenverödung geprüft werden (siehe Kapitel 6.5.1.2).

6.5.1.2 Makrophytenverödung

Trifft eines der beiden zuletzt genannten Kriterien der in Kapitel 6.5.1.1 aufgeführten Sicherungskriterien nicht zu, d.h. ist die Gesamtquantität entsprechend des Gewässertyps zu niedrig (auch bei vollständiger Abwesenheit von Makrophyten), oder ist der Anteil von *Nuphar lutea, Nymphaea alba* und *Persicaria amphibia* ≥ 80%, so muss auf Makrophytenverödung geprüft werden.

Als Makrophytenverödung wird ausschließlich das Nichtvorhandensein von Makrophyten aufgrund nachweisbarer anthropogener Einflüsse bezeichnet. Makrophyten können aber ebenfalls natürlicherweise an Gewässerstellen fehlen. Das kann verschiedenste Gründe haben, wie z.B. starke Beschattung. Angaben zu einer evtl. vorliegenden Makrophytenverödung sowie deren Gründe müssen bereits bei der Kartierung vor Ort gemacht werden (Abbildung 11). Nicht immer können die Gründe für ein Fehlen der Makrophyten benannt werden. Dann wird nicht von einer Verödung ausgegangen.

Gewässerstellen, an denen keine oder nur sehr wenige Makrophyten wachsen und an denen keine erkennbaren anthropogenen Einflüsse vorliegen, die das Fehlen der Wasserpflanzen begründen, gelten nicht als verödet.

Liegt eine nachweisbare Makrophytenverödung vor, gilt die Bewertung der Teilkomponente Makrophyten als gesichert, der RI wird auf den Wert -100 gesetzt, das Modul Makrophytenindex bekommt somit den Wert 0,0 und wird mit der anderen vorliegenden gesicherten Teilkomponente

verschnitten. Die negative anthropogene Beeinflussung spiegelt sich direkt im Bewertungsergebnis wider.

Das Vorhandensein einer für eine gesicherte Bewertung ausreichenden Makrophytenpopulation kann von den in Tabelle 16 aufgeführten Faktoren beeinflusst werden. In der Spalte "Makrophytenverödung" wird angegeben, ob die genannte Belastung eine Verödung (ja) oder ein natürliches Ausbleiben (nein) der Teilkomponente bewirkt. Das Auftreten mehrer Belastungen ist möglich. In das Bewertungstool Phylib werden lediglich die Faktoren eingegeben, die eine Verödung begründen (siehe Spalte Eingabe Phylib-Tool). In der Importtabelle wird nur die Hauptbelastung angegeben, Mehrfachnennungen sind dort nicht möglich.

Tabelle 16: Belastungen natürlicher und anthropogen bedingter Art, die ein Fehlen von Makrophyten bewirken können sowie deren Einstufung hinsichtlich einer Makrophytenverödung

Belastungsart	Belastung	Makrophyten- verödung	Eingabe Phylib-Tool
stofflich	starke trophische Belastung	Ja	V
	starke saprobielle/organische Belastung	Ja	V
	Versauerung	Ja	V
	geogen bedingter niedriger pH-Wert	Nein	
	Versalzung	Ja	V
	geogen bedingt hoher Salzgehalt	Nein	
	chemische Belastung (z. B. Pestizideintrag oder Schwermetalle)	Ja	V
	natürlich bedingter hoher Huminstoffgehalt	Nein	
mechanisch	starker Schwebstoffeintrag (z.B. durch Erosion von Ackerflächen)	Ja	V
	natürlich bedingter Schwebstoffeintrag (z.B. geprägt von Gletscherabfluss)	Nein	
	Mahd	Ja	V
	Ausbaggerung (z.B. Schifffahrtsrinnen, Hafenanlagen)	Ja	V
	anthropogen bedingter Wellenschlag (z.B. Schiffsverkehr)	Ja	√
	natürlich bedingter Wellenschlag (z.B. durch Windexposition)	Nein	
	Uferverbau der zu veränderten hydromorphologischen Bedingungen führt (z. B stark brechende statt auslaufende Wellen)	Ja	V
	Sediment, das aus natürlichen Gründen stark umgelagert wird (z.B. Wind in flachen Seen, Buchten, Ufern)	Nein	
	Bootsbetrieb	Ja	V
	Badebetrieb	Ja	V
	Tritt- und Fraßbelastung durch Weidetiere	Ja	√
	natürliche Wasserstandsschwankungen	Nein	
strukturell	Sohlverbau	Ja	√
	Felssohle	Nein	
Herbivore Organismen	Besatz mit herbivoren Fischen	Ja	V
	Besatz mit nicht heimischen und/oder zu großen Populationen von Krebsen	Ja	V
	natürliche Populationsgröße heimischer Krebsen	Nein	
	herbivore heimische Wasservögel, natürliche Populationsgröße	Nein	
	nicht heimische herbivore Wasservögel und / oder zu große Populationen herbivorer Wasservögel	Ja	V
Allgemein	wenig / keine Makrophyten ohne erkennbaren natürlichen oder anthropogen bedingten Grund	Nein	
	anthropogen bedingte starke Beschattung z.B. Bauten am Ufer	Ja	V

6.5.1.3 Berechnung des Referenzindex

Zur Berechnung des Referenzindex werden ausschließlich die submersen Makrophyten herangezogen. Zu den submersen Makrophyten zählen alle untergetaucht wachsenden Arten sowie die Schwimmblattpflanzen, die Wasserschweber und die flutenden Formen. Amphiphytische Taxa gehen bei untergetauchtem Wachstum in die Bewertung ein, helophytisch wachsende Pflanzen werden nicht berücksichtigt. Dies gilt auch für die Anwendung der Sicherungs- und Zusatzkriterien.

Umrechnung von Pflanzenmengen in Quantitäten

Die nominal skalierten Werte der Pflanzenmengenskala werden vor Durchführung von Berechnungen in metrische Quantitätsstufen umgewandelt:

$$Pflanzenmenge^3 = Quantität$$

Zuordnung der Taxa zu den Artengruppen

Die an der Probestelle auftretenden Taxa werden den *typspezifischen* Artengruppen zugeordnet (vgl. Tabelle 17).

Sollten bei neuen Kartierungen Arten auftreten, die in der angegebenen Artenliste nicht genannt werden, sollen diese Arten für die Indexbewertung nicht berücksichtigt werden. Da bei einem größeren Anteil nicht eingestufter Arten eine Verfälschung des Indexwertes zu erwarten ist, darf bei einem Anteil von ≥ 25 % nicht eingestufter Arten an der Gesamtquantität der Index als nicht gesichert betrachtet werden.

Berechnung der Gesamtquantitäten

Die aus den Pflanzenmengen berechneten Quantitäten der Arten werden für jede Artengruppe gesondert für alle an der Probestelle vorkommenden submersen Arten aufsummiert.

Berechnung des Referenzindex

Die Berechnung des Referenzindex erfolgt anhand folgender Formel (Gleichung 1):

Gleichung 1: Berechnung des Referenzindex

$$RI = \frac{\sum_{i=1}^{n_A} Q_{Ai} - \sum_{i=1}^{n_C} Q_{Ci}}{\sum_{i=1}^{n_g} Q_{gi}} *100$$

$$QAi = Quantität des i-ten Taxons aus Gruppe A$$

$$QCi = Quantität des i-ten Taxons aus Gruppe C$$

$$Qgi = Quantität des i-ten Taxons aller Gruppen$$

$$nA = Gesamtzahl der Taxa aus Gruppe A$$

$$nC = Gesamtzahl der Taxa aus Gruppe C$$

$$ng = Gesamtzahl der Taxa aller Gruppen$$

RI = Referenzindex

Mit dem Referenzindex werden typspezifisch Zusatzkriterien verrechnet (s. Kapitel "Typ AK(s)" S. 77 bis "Typ TKp" S. 83).

Das Zusatzkriterium "mittlere untere Vegetationsgrenze" berechnet sich als Mittelwert aus den an allen Transekten eines Oberflächenwasserkörpers ermittelten Vegetationsgrenzen. Dabei gehen

nur die Werte ein, die plausibel sind. D.h. Werte, die z.B. auf Grund morphologischer Besonderheiten oder auch natürlicherweise hoher Trübung durch alpine Zuflüsse nicht der möglichen Besiedlungstiefe entsprechen, werden in der Berechnung nicht berücksichtigt. Als Beispiel für eine unplausible UMG gilt auch eine flache Seebucht, deren Wassertiefe geringer ist als der Grenzwert der zur Abwertung führt.

Bei Talsperren mit hohen Wasserstandsschwankungen darf das Zusatzkriterium "UMG" nicht angewendet werden, siehe Kapitel 6.3.1.2.

Erst der Endwert, der nach der Einbeziehung aller Zusatzkriterien entsteht, darf für die Gesamtbewertung von Seen und die Verrechnung des Teilmoduls Makrophyten mit der Diatomeenbewertung verwendet werden.

Sind mehr als 50% aller Transekt-UMGs nicht sicher ermittelbar, darf der UMG-Mittelwert und damit auch die Bewertungsergebnisse nicht als gesichert gelten. Eine Ausnahme stellt der Typ AKs dar. Dort muss in einem solchen Fall geprüft werden, ob die UMGs aufgrund von Steilabbrüchen ungesichert sind. Ist dies der Fall, wird trotzdem gesichert bewertet. Anhand der Sichttiefe und trophierelevanten Faktoren (z.B. Nährstoffgehalt) wird in einem solchen Fall abgeschätzt, ob eine plausibel ermittelte UMG die Grenzwerte für eine Abstufung unterschreiten würde und ein entsprechender Wert zur Berechnung herangezogen.

Tabelle 17: Liste der Indikatoren. Meterangaben beziehen sich auf die Tiefenstufe, in der das Taxon gefunden wurde. Neuerungen sind durch Kleinbuchstaben und gelbe Markierungen gekennzeichnet.

lfd. Nr.	Taxon_Tiefenstufe	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	ТКр
1	Acorus calamus_0_1	С	С	С	С	С	В	В	В
2	Acorus calamus_1_2	С	С	С	С	C	В	В	В
3	Acorus calamus_2_4	С	С	С	С	C	В	В	В
4	Acorus calamus_>4	С	С	С	С	C	В	В	В
5	Alisma gramineum_0_1	В	В	В	В	В	В	В	В
6	Alisma gramineum_1_2	В	В	В	В	В	В	В	В
7	Alisma gramineum_2_4	В	В	В	В	В	В	В	В
8	Alisma gramineum_>4	В	В	В	В	В	В	В	В
9	Alisma lanceolatum_0_1	В	В	В	В	В	В	В	В
10	Alisma lanceolatum_1_2	В	В	В	В	В	В	В	В
11	Alisma lanceolatum_2_4	В	В	В	В	В	В	В	В
12	Alisma lanceolatum_>4	В	В	В	В	В	В	В	В
13	Alisma plantago-aquatica_0_1	В	В	В	В	В	В	В	В
14	Alisma plantago-aquatica_1_2	В	В	В	В	В	В	В	В
15	Alisma plantago-aquatica_2_4	В	В	В	В	В	В	В	В
16	Alisma plantago-aquatica_>4	В	В	В	В	В	В	В	В
17	Brachythecium rivulare_0_1	В	В	В	В	В	В	В	В
18	Brachythecium rivulare_1_2	В	В	В	В	В	В	В	В
19	Brachythecium rivulare_2_4	В	В	В	В	В	В	В	В
20	Brachythecium rivulare_>4	В	В	В	В	В	В	В	В
21	Butomus umbellatus_0_1	С	С	С	С	С	В	В	В
22	Butomus umbellatus_1_2	С	С	С	С	С	В	В	В
23	Butomus umbellatus_2_4	С	С	С	С	С	В	В	В
24	Butomus umbellatus_>4	С	С	С	С	С	В	В	В
25	Calliergonella cuspidata_0_1	В	В	С	В	В	В	В	В
26	Calliergonella cuspidata_1_2	В	В	С	В	В	В	В	В
27	Calliergonella cuspidata_2_4	В	В	С	В	В	В	В	В
28	Callitriche cophocarpa_0_1	С	С	В	В	В	В	В	В
29	Callitriche cophocarpa_1_2	С	С	В	В	В	В	В	В
30	Callitriche cophocarpa_2_4	С	С	В	В	В	В	В	В
31	Callitriche cophocarpa_>4	С	С	В	В	В	В	В	В
32	Callitriche hamulata_0_1	Α	Α	Α	Α	Α	Α	Α	Α
33	Callitriche hamulata 1 2	Α	Α	Α	Α	Α	Α	Α	Α

lfd. Nr.	Taxon Tiefenstufe	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	ТКр
34	Callitriche hamulata_2_4	A	A	A	A	A	A	A	А
35	Callitriche hamulata >4	A	Α	Α	Α	Α	Α	Α	Α
36	Callitriche hermaphroditica_0_1	В	В	В	В	В	В	В	В
37	Callitriche hermaphroditica 1 2	В	В	В	В	В	В	В	В
38	Callitriche hermaphroditica_2_4	В	В	В	В	В	В	В	В
39	Callitriche hermaphroditica_>4	В	В	В	В	В	В	В	В
40	Callitriche obtusangula_0_1	С	С	С	С	С	В	В	В
41	Callitriche obtusangula_1_2	С	C	С	C	C	В	В	В
42	Callitriche obtusangula_2_4	С	С	С	С	С	В	В	В
43	Callitriche obtusangula_>4	С	С	С	С	С	В	В	В
44	Callitriche palustris_0_1	Α	Α	Α	Α	Α	Α	Α	Α
45	Callitriche palustris_1_2	А	Α	Α	Α	Α	Α	Α	Α
46	Callitriche palustris_2_4	Α	Α	Α	Α	Α	Α	Α	Α
47	Callitriche palustris_>4	А	Α	Α	Α	Α	Α	Α	Α
48	Carex riparia_0_1	В	В	В	В	В	В	В	В
49	Carex riparia_1_2	В	В	В	В	В	В	В	В
50	Carex riparia_2_4	В	В	В	В	В	В	В	В
51	Carex riparia_>4	В	В	В	В	В	В	В	В
52	Ceratophyllum demersum_0_1	С	С	С	С	С	С	С	С
53	Ceratophyllum demersum_1_2	С	С	С	С	В	С	В	В
54	Ceratophyllum demersum_2_4	С	С	С	С	В	В	В	В
55	Ceratophyllum demersum_>4	С	C	C	C	В	В	В	В
56	Ceratophyllum submersum_0_1	С	C	C	С	С	С	С	В
57	Ceratophyllum submersum_1_2	С	C	C	С	В	В	В	В
58	Ceratophyllum submersum_2_4	С	C	C	C	В	В	В	В
59	Ceratophyllum submersum_>4	С	С	C	С	В	В	В	В
60	Chara aspera var. curta_0_1	Α	Α	В	Α	Α	Α	Α	Α
61	Chara aspera var. curta_1_2	Α	Α	В	Α	Α	Α	Α	Α
62	Chara aspera var. curta_2_4	Α	Α	В	Α	Α	Α	Α	Α
63	Chara aspera var. curta_>4	А	Α	В	Α	Α	Α	Α	Α
64	Chara aspera_0_1	Α	Α	В	Α	Α	Α	Α	Α
65	Chara aspera_1_2	Α	Α	В	Α	Α	Α	Α	Α
66	Chara aspera_2_4	Α	Α	В	Α	Α	Α	Α	Α
67	Chara aspera_>4	Α	Α	В	Α	Α	Α	Α	Α
68	Chara braunii_0_1			Α	Α	Α	Α	Α	Α
69	Chara braunii_1_2			Α	Α	Α	Α	Α	Α
70	Chara braunii_2_4			Α	Α	Α	Α	Α	Α
71	Chara braunii_>4			Α	Α	Α	Α	Α	Α
72	Chara contraria var. hispidula_0_1	В	В	В	В	В	В	В	В
73	Chara contraria var. hispidula_1_2	В	В	В	В	В	В	В	В
74	Chara contraria var. hispidula_2_4	В	В	В	В	В	В	В	В
75	Chara contraria var. hispidula_>4	Α	Α	В	Α	Α	Α	Α	Α
76	Chara contraria_0_1	В	В	В	В	В	В	В	В
77	Chara contraria_1_2	В	В	В	В	a	В	В	Α
78	Chara contraria_2_4	a	Α	В	Α	Α	Α	Α	Α
79	Chara contraria_>4	A	Α	В	Α	Α	A	A	Α
80	Chara delicatula_0_1	В	Α	В	В	В	В	В	В
81	Chara delicatula_1_2	В	Α	В	В	В	В	В	Α
82	Chara delicatula_2_4	A	Α	Α	Α	Α	A	A	Α
83	Chara delicatula_>4	A	Α	A	Α	Α	A	A	Α
84	Chara denudata_0_1	В	В	В	В	В	В	В	В
85	Chara denudata_1_2	В	В	В	В	В	В	В	В
86	Chara denudata_2_4	В	В	В	В	В	В	В	В
87	Chara denudata_>4	В	В	В	В	В	В	В	В
88	Chara filiformis_0_1				Α	Α	Α	Α	Α
89	Chara filiformis_1_2				Α	Α	Α	Α	Α
90	Chara filiformis_2_4				Α	Α	Α	Α	Α
91	Chara filiformis_>4				Α	Α	Α	Α	Α
92	Chara globularis_0_1	В	В	В	В	В	В	В	В
93	Chara globularis_1_2	В	В	В	В	Α	В	В	Α
94	Chara globularis_2_4	a	A	В	Α	Α	a	Α	Α
95	Chara globularis_>4	Α	Α	В	Α	Α	Α	Α	Α

lfd. Nr.	Taxon_Tiefenstufe	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	ТКр
96	Chara hispida_0_1	A	Α		Α	Α	A	A	Α
97	Chara hispida_1_2	Α	Α		Α	Α	Α	Α	Α
98	Chara hispida_2_4	Α	Α		Α	Α	Α	Α	Α
99	Chara hispida_>4	Α	Α		Α	Α	Α	Α	Α
100	Chara intermedia_0_1	Α	Α		Α	Α	Α	Α	Α
101	Chara intermedia_1_2	Α	Α		Α	Α	Α	Α	Α
102	Chara intermedia_2_4	Α	Α		Α	Α	Α	Α	Α
103	Chara intermedia_>4	Α	Α		Α	Α	Α	Α	Α
104	Chara polyacantha_0_1	Α	Α		Α	Α	Α	Α	Α
105	Chara polyacantha_1_2	Α	Α		Α	Α	Α	Α	Α
106	Chara polyacantha_2_4	Α	Α		Α	Α	Α	Α	Α
107	Chara polyacantha_>4	Α	Α		Α	Α	Α	Α	Α
108	Chara rudis_0_1	A	Α		Α	Α	Α	Α	Α
109	Chara rudis_1_2	A	Α		Α	Α	Α	Α	Α
110	Chara rudis_2_4	A	Α		Α	Α	Α	Α	Α
111	Chara rudis_>4	A	Α		Α	Α	Α	Α	Α
112	Chara strigosa_0_1	A	Α						
113	Chara strigosa_1_2	A	Α						
114	Chara strigosa_2_4	A	Α						
115	Chara strigosa_>4	A	A						
116	Chara tomentosa_0_1	A	Α		Α	Α	A	A	A
117	Chara tomentosa_1_2	A	A		A	A	Α	Α	Α
118	Chara tomentosa_2_4	A	Α		A	Α	Α	Α	Α
119	Chara vulgaris 0, 1	A B	A B		A B	A B	A B	A B	A
120 121	Chara vulgaris_0_1 Chara vulgaris_1_2	В	В		В	В	В	В	A A
121	Chara vulgaris_1_2 Chara vulgaris_2_4	В			В	А	a		A
123	Chara vulgaris_>4 Chara vulgaris_>4	a	a a		А	Α	a	a A	A
124	Cladium mariscus_0_1	В	В	В	В	В	В	В	В
125	Cladium mariscus_0_1 Cladium mariscus_1_2	В	В	В	В	В	В	В	В
126	Cladium mariscus_2_4	В	В	В	В	В	В	В	В
127	Cladium mariscus_>4	В	В	В	В	В	В	В	В
128	Drepanocladus aduncus_0_1	В	В	В	В	В	В	В	В
129	Drepanocladus aduncus 1 2	В	В	В	В	В	В	В	В
130	Drepanocladus aduncus_2_4	В	В	В	В	В	В	В	В
131	Drepanocladus aduncus_>4	В	В	В	В	В	В	В	В
132	Drepanocladus fluitans_0_1	В	В	Α	В	В	В	В	В
133	Drepanocladus fluitans_1_2	В	В	Α	В	В	В	В	В
134	Drepanocladus fluitans_2_4	В	В	Α	В	В	В	В	В
135	Drepanocladus fluitans_>4	В	В	Α	В	В	В	В	В
136	Elatine hexandra_0_1			Α	Α	Α	Α	Α	Α
137	Elatine hexandra_1_2			Α	Α	Α	Α	Α	Α
138	Elatine hexandra_2_4			Α	Α	Α	Α	Α	Α
139	Elatine hexandra_>4			Α	Α	Α	Α	Α	Α
140	Elatine hydropiper_0_1			Α	Α	Α	Α	Α	Α
141	Elatine hydropiper_1_2			Α	Α	Α	Α	Α	Α
142	Elatine hydropiper_2_4			Α	Α	Α	Α	Α	Α
143	Elatine hydropiper_>4			Α	Α	Α	Α	A	Α
144	Elatine triandra_0_1			Α	A	Α	A	A	A
145	Elatine triandra_1_2			Α	A	A	A	A	A
146	Elatine triandra_2_4			Α	A	A	Α	Α	Α
147 148	Elatine triandra_>4 Eleocharis acicularis_0_1	В	В	A B	A B	A B	A B	A B	A B
148	Eleocharis acicularis_0_1 Eleocharis acicularis_1_2	В	В	В	В	В	В	В	В
150	Eleocharis acicularis_1_2 Eleocharis acicularis_2_4	В	В	В	В	В	В	В	В
151	Eleocharis acicularis_2_4 Eleocharis acicularis_>4	В	В	В	В	В	В	В	В
151	Eleocharis palustris_0_1	С	С	С	С	С	С	С	С
153	Eleocharis palustris_0_1 Eleocharis palustris_1_2	С	С	С	С	С	С	С	С
154	Eleocharis palustris_1_2 Eleocharis palustris_2_4	С	С	С	С	С	С	С	С
155	Eleocharis palustris_>4	С	С	С	С	С	С	С	С
156	Elodea canadensis_0_1	С	С	С	С	С	С	С	С
157	Elodea canadensis_1_2	С	С	С	С	С	С	С	В

lfd. Nr.	Taxon_Tiefenstufe	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	ТКр
158	Elodea canadensis 2 4	C	С	C	C	В	C	C	В
159	Elodea canadensis_>4	С	В	С	В	В	В	В	В
160	Elodea nuttallii 0 1	С	С	С	С	С	С	С	C
161	Elodea nuttallii_1_2	С	C	С	С	С	С	С	В
162	Elodea nuttallii_2_4	С	С	С	С	В	С	С	В
163	Elodea nuttallii_>4	С	В	С	В	В	С	С	В
164	Epilobium hirsutum_0_1	В	В	В	В	В	В	В	В
165	Epilobium hirsutum_1_2	В	В	В	В	В	В	В	В
166	Epilobium hirsutum_2_4	В	В	В	В	В	В	В	В
167	Epilobium hirsutum_>4	В	В	В	В	В	В	В	В
168	Equisetum fluviatile_0_1	В	В	В	В	В	В	В	В
169	Equisetum fluviatile_1_2	В	В	В	В	В	В	В	В
170	Equisetum fluviatile_2_4	В	В	В	В	В	В	В	В
171	Equisetum fluviatile_>4	В	В	В	В	В	В	В	В
172	Fontinalis antipyretica_0_1	В	В	В	В	В	В	В	В
173	Fontinalis antipyretica_1_2	В	В	В	В	В	В	В	Α
174	Fontinalis antipyretica_2_4	В	В	В	В	Α	В	В	Α
175	Fontinalis antipyretica_>4	В	В	В	В	Α	Α	Α	Α
176	Fontinalis hypnoides_0_1	В	В	В	В	В	В	В	В
177	Fontinalis hypnoides_1_2	В	В	В	В	В	В	В	В
178	Fontinalis hypnoides_2_4	В	В	В	В	В	В	В	В
179	Fontinalis hypnoides_>4	В	В	В	В	В	В	В	В
180	Fontinalis squamosa_0_1	В	В	В	В	В	В	В	В
181	Fontinalis squamosa_1_2	В	В	В	В	В	В	В	В
182	Fontinalis squamosa_2_4	В	В	В	В	В	В	В	В
183	Fontinalis squamosa_>4	В	В	В	В	В	В	В	В
184	Galium palustre ssp. palustre_0_1	В	В	В	В	В	В	В	В
185	Galium palustre ssp. palustre_1_2	В	В	В	В	В	В	В	В
186	Galium palustre ssp. palustre_2_4	В	В	В	В	В	В	В	В
187	Galium palustre ssp. palustre_>4	В	В	В	В	В	В	В	В
188	Glyceria fluitans_0_1	В	В	В	В	В	В	В	В
189	Glyceria fluitans_2_4	В	В	В	В	В	В	В	В
190	Glyceria fluitans_>4	В	В	В	В	В	В	В	В
191	Groenlandia densa_0_1	С	С	В	В	В	A	Α	A
192 193	Groenlandia densa_1_2	C	C C	В	B B	B B	A	A	A
194	Groenlandia densa_2_4 Groenlandia densa_>4	С	С	В	В	В	A	A	A
	Hippuris vulgaris_0_1	С	В	С	A	A	В	В	В
196	Hippuris vulgaris_1_2	С	В	С	Α	Α	В	В	В
197	Hippuris vulgaris_2_4	С	В	С	Α	Α	В	В	В
198	Hippuris vulgaris_>4	С	В	С	Α	Α	В	В	В
199	Hottonia palustris_0_1	A	А	A	Α	Α	A	A	A
200	Hottonia palustris_1_2	A	Α	Α	Α	Α	Α	Α	Α
201	Hottonia palustris_2_4	Α	Α	Α	Α	Α	Α	Α	Α
202	Hottonia palustris_>4	A	Α	Α	Α	Α	Α	Α	Α
203	Hydrocharis morsus-ranae_0_1	Α	Α	Α	Α	Α	Α	Α	Α
204	Hydrocharis morsus-ranae_1_2	Α	Α	Α	Α	Α	Α	Α	Α
205	Hydrocharis morsus-ranae_2_4	Α	Α	Α	Α	Α	Α	Α	Α
206	Hydrocharis morsus-ranae_>4	Α	Α	Α	Α	Α	Α	Α	Α
207	Hydrocotyle vulgaris_0_1	Α	Α	Α	Α	Α	Α	Α	Α
208	Hydrocotyle vulgaris_1_2	Α	Α	Α	Α	Α	Α	Α	Α
209	Hydrocotyle vulgaris_2_4	Α	Α	Α	Α	Α	Α	Α	Α
210	Hydrocotyle vulgaris_>4	Α	Α	Α	Α	Α	Α	Α	Α
211	Hygrohypnum duriusculum_0_1			Α	В	В			
212	Hygrohypnum duriusculum_1_2			Α	В	В			
213	Hygrohypnum duriusculum_2_4			Α	В	В			
214	Hygrohypnum duriusculum_>4			Α	В	В			
215	Hygrohypnum ochraceum_0_1	В	В	С	В	В	В	В	В
216	Hygrohypnum ochraceum_1_2	В	В	С	В	В	В	В	В
217	Hygrohypnum ochraceum_2_4	В	В	С	В	В	В	В	В
218	Hygrohypnum ochraceum_>4	В	В	С	В	В	В	В	В
219	Isoetes echinospora_0_1			Α			Α	Α	Α

lfd. Nr.	Taxon Tiefenstufe	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	ТКр
220	Isoetes echinospora_1_2	ν-,		Α	- 3		А	A	Α
221	Isoetes echinospora_2_4			Α			Α	Α	Α
222	Isoetes echinospora_>4			Α			Α	Α	Α
223	Isoetes lacustris_0_1			Α			Α	Α	Α
224	Isoetes lacustris_1_2			Α			Α	Α	Α
225	Isoetes lacustris_2_4			Α			Α	Α	Α
226	Isoetes lacustris_>4			Α			Α	Α	Α
227	Juncus articulatus_0_1	В	В	В	В	В	В	В	В
228	Juncus articulatus_1_2	В	В	В	В	В	В	В	В
229	Juncus articulatus_2_4	В	В	В	В	В	В	В	В
230	Juncus articulatus_>4	В	В	В	В	В	В	В	В
231	Juncus bulbosus_0_1	В	В	В	В	В	В	В	В
232	Juncus bulbosus_1_2	В	В	В	В	В	В	В	В
233	Juncus bulbosus_2_4	В	В	В	В	В	В	В	В
234	Juncus bulbosus_>4	В	В	В	В	В	В	В	В
235	Juncus subnodulosus_0_1	A	Α	В	Α	Α	A	Α	Α
236	Juncus subnodulosus_1_2	A	A	В	Α	Α	A	A	Α
237	Juncus subnodulosus_2_4	A	Α	В	Α	Α	Α	Α	Α
238	Juncus subnodulosus_>4	A	Α	В	Α	Α	Α	A	Α
239	Jungermannia sphaerocarpa_0_1	В	В	A	В	В	В	В	В
240	Jungermannia sphaerocarpa_1_2	В	В	Α	В	В	В	В	В
241	Jungermannia sphaerocarpa_2_4	В	В	A	В	В	В	В	В
242	Jungermannia sphaerocarpa_>4	В	В	Α	В	В	В	В	В
243	Lagarosiphon major_0_1	С	С	С	С	С	С	С	С
244	Lagarosiphon major_1_2	C	С	C	C	C	C	C	С
245	Lagarosiphon major_2_4		С					С	С
246 247	Lagarosiphon major_>4	С	C	C	C	C	C	С	СВ
248	Lemna gibba_0_1 Lemna gibba_1_2	C	С	С	С	С	С	С	В
249	Lemna gibba_1_2 Lemna gibba_2_4	С	С	С	С	С	С	С	В
250	Lemna minor_0_1	С	С	С	С	С	С	С	В
251	Lemna minor_0_1 Lemna minor_1_2	С	С	С	С	С	С	С	В
252	Lemna minuta_0_1	С	С	С	С	С	С	С	В
253	Lemna trisulca_0_1	С	С	С	C.	В	С	С	В
254	Lemna trisulca 1 2	С	С	С	С	В	С	С	В
255	Lemna trisulca_2_4	С	С	С	В	В	С	В	В
256	Lemna trisulca_>4	В	В	С	В	В	В	В	В
257	Lemna turionifera_0_1	С	С	С	С	В	С	С	В
258	Leptodictyum riparium_0_1	В	В	В	В	В	В	В	В
259	Leptodictyum riparium_1_2	В	В	В	В	В	В	В	В
260	Leptodictyum riparium_2_4	В	В	В	В	В	В	В	В
261	Leptodictyum riparium_>4	В	В	В	В	В	В	В	В
262	Littorella uniflora_0_1	Α	Α	Α	Α	Α	Α	Α	Α
263	Littorella uniflora_1_2	Α	Α	Α	Α	Α	Α	Α	Α
264	Littorella uniflora_2_4	Α	Α	Α	Α	Α	Α	Α	Α
265	Littorella uniflora_>4	Α	Α	Α	Α	Α	Α	Α	Α
266	Lobelia dortmanna_0_1	Α	Α	Α	Α	Α	Α	Α	Α
267	Lobelia dortmanna_1_2	Α	Α	Α	Α	Α	Α	Α	Α
268	Lobelia dortmanna_2_4	Α	Α	Α	Α	Α	Α	Α	Α
269	Lobelia dortmanna_>4	Α	Α	Α	Α	Α	Α	Α	Α
270	Luronium natans_0_1	Α	Α	Α	Α	Α	Α	Α	Α
271	Luronium natans_1_2	Α	Α	Α	Α	Α	Α	Α	Α
272	Luronium natans_2_4	Α	Α	Α	Α	Α	Α	Α	Α
273	Luronium natans_>4	Α	Α	Α	Α	Α	Α	Α	Α
274	Lycopus europaeus_0_1	В	В	В	В	В	В	В	В
275	Lysimachia vulgaris_0_1	В	В	В	В	В	В	В	В
276	Lythrum salicaria_0_1	В	В	В	В	В	В	В	В
277	Mentha aquatica_0_1	В	В	В	В	В	В	В	В
278	Mentha aquatica_1_2	В	В	В	В	В	В	В	В
279	Mentha aquatica_2_4	В	В	В	В	В	В	В	В
280	Mentha aquatica_>4	В	В	В	В	В	В	В	В
281	Myosotis scorpioides_0_1	В	В	В	В	В	В	В	В

282 283 284 285	Taxon_Tiefenstufe Myosotis scorpioides_1_2	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	TKp
283 284		b	b	b	b	b	b	b	b
284	Myosotis scorpioides_2-4	b	b	b	b	b	b	b	b
285	Myriophyllum alterniflorum_0_1	В	В	В	Α	Α	b	b	Α
200	Myriophyllum alterniflorum_1_2	Α	Α	Α	Α	Α	b	Α	Α
286	Myriophyllum alterniflorum_2_4	Α	Α	Α	Α	Α	Α	Α	Α
287	Myriophyllum alterniflorum_>4	Α	Α	Α	Α	Α	Α	Α	Α
288	Myriophyllum heterophyllum_0_1	С	С	С	В	В	В	В	В
289	Myriophyllum heterophyllum_1_2	С	С	С	В	В	В	В	В
290	Myriophyllum heterophyllum_2_4	С	С	С	В	В	В	В	В
291	Myriophyllum heterophyllum_>4	С	С	С	В	В	В	В	В
292	Myriophyllum spicatum_0_1	В	В	С	В	В	В	В	В
293	Myriophyllum spicatum_1_2	В	В	С	В	В	В	В	В
294	Myriophyllum spicatum_2_4	В	В	В	В	В	В	В	В
295	Myriophyllum spicatum_>4	В	В	В	В	В	В	В	В
296	Myriophyllum verticillatum_0_1	В	В	С	В	В	В	В	Α
297	Myriophyllum verticillatum_1_2	В	В	С	В	Α	В	Α	Α
298	Myriophyllum verticillatum_2_4	В	В	В	В	Α	В	Α	Α
299	Myriophyllum verticillatum_>4	В	В	В	В	Α	В	Α	Α
300	Najas flexilis_0_1	В	В	В	Α	Α	Α	Α	Α
301	Najas flexilis_1_2	В	В	В	Α	Α	Α	Α	Α
302	Najas flexilis_2_4	В	В	В	Α	Α	Α	Α	Α
303	Najas flexilis_>4	В	В	В	Α	Α	Α	Α	Α
304	Najas marina ssp. intermedia_0_1	В	В	С	В	В	В	В	В
305	Najas marina ssp. intermedia_1_2	В	В	С	В	В	В	В	В
306	Najas marina ssp. intermedia_2_4	В	В	С	В	В	В	В	Α
307	Najas marina ssp. intermedia_>4	В	В	С	В	В	В	Α	Α
308	Najas marina_0_1	С	С	С	С	С	С	С	С
309	Najas marina_1_2	С	С	С	С	С	С	С	С
310	Najas marina_2_4	С	С	С	С	С	С	С	С
311	Najas marina_>4	С	С	С	С	С	С	С	С
312	Najas minor_0_1	В	В	В	В	В	В	В	В
313	Najas minor_1_2	В	В	В	В	В	В	В	В
314	Najas minor_2_4	Α	Α	Α	В	В	В	Α	Α
315	Najas minor_>4	Α	Α	Α	В	В	В	Α	Α
316	Nasturtium officinale_0_1	В	В	В	В	В	В	В	В
317	Nasturtium officinale_1_2	В	В	В	В	В	В	В	В
318	Nitella batrachosperma_0_1	Α	Α	Α	Α	Α	Α	Α	Α
319	Nitella batrachosperma_1_2	Α	Α	Α	Α	Α	Α	Α	Α
320	Nitella batrachosperma_2_4	Α	Α	Α	Α	Α	Α	Α	Α
321	Nitella batrachosperma_>4	Α	Α	Α	Α	Α	Α	Α	Α
322	Nitella capillaris_0_1			Α	Α	Α	Α	Α	Α
323	Nitella capillaris_1_2			Α	Α	Α	Α	Α	Α
324	Nitella capillaris_2_4			Α	Α	Α	Α	Α	Α
325	Nitella capillaris_>4			Α	Α	Α	Α	Α	Α
326	Nitella flexilis_0_1	В	В	В	В	В	В	В	Α
327	Nitella flexilis_1_2	В	В	В	В	В	В	В	Α
328	Nitella flexilis_2_4	В	В	В	В	Α	В	Α	Α
329	Nitella flexilis_>4	Α	Α	Α	Α	Α	Α	Α	Α
330	Nitella gracilis_0_1	А	Α	Α	Α	Α	Α	Α	Α
331	Nitella gracilis_1_2	Α	Α	Α	Α	Α	Α	Α	Α
332	Nitella gracilis_2_4	А	Α	Α	Α	Α	Α	Α	Α
333	Nitella gracilis_>4	Α	Α	Α	Α	Α	Α	Α	Α
334	Nitella mucronata_0_1	В	В	В	В	В	В	В	Α
335	Nitella mucronata_1_2	В	В	В	В	В	В	В	Α
336	Nitella mucronata_2_4	В	В	В	Α	Α	В	Α	Α
337	Nitella mucronata_>4	Α	Α	Α	Α	Α	Α	Α	Α
338	Nitella opaca_0_1	В	Α	В	В	Α	В	Α	Α
339	Nitella opaca_1_2	Α	Α	Α	Α	Α	Α	Α	Α
340	Nitella opaca_2_4	А	Α	Α	Α	Α	Α	Α	Α
341	Nitella opaca_>4	А	Α	Α	Α	Α	Α	Α	Α
342	Nitella syncarpa_0_1	А	Α	Α	Α	Α	Α	Α	Α
343	Nitella syncarpa_1_2	Α	Α	Α	Α	Α	Α	Α	Α

lfd. Nr.	Taxon_Tiefenstufe	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	ТКр
344	Nitella syncarpa_2_4	A	А	Α	A	Α	A	A	Α
345	Nitella syncarpa_>4	Α	Α	Α	Α	Α	Α	Α	Α
346	Nitella tenuissima_0_1	А	Α	Α	Α	Α	Α	Α	Α
347	Nitella tenuissima_1_2	А	Α	Α	Α	Α	Α	Α	Α
348	Nitella tenuissima_2_4	Α	Α	Α	Α	Α	Α	Α	Α
349	Nitella tenuissima_>4	Α	Α	Α	Α	Α	Α	Α	Α
350	Nitella translucens_0_1			Α	Α	Α	Α	Α	Α
351	Nitella translucens_1_2			Α	Α	Α	Α	Α	Α
352	Nitella translucens_2_4			Α	Α	Α	Α	Α	Α
353	Nitella translucens_>4			Α	Α	Α	Α	Α	Α
354	Nitellopsis obtusa_0_1	В	В		В	В	В	В	В
355	Nitellopsis obtusa_1_2	В	В		В	В	В	В	В
356	Nitellopsis obtusa_2_4	В	Α		Α	Α	В	Α	Α
357	Nitellopsis obtusa_>4	Α	Α		Α	Α	Α	Α	Α
358	Nuphar lutea_0_1	В	В	В	В	В	В	В	В
359	Nuphar lutea_1_2	В	В	В	В	В	В	В	В
360	Nuphar lutea_2_4	В	В	В	В	В	В	В	В
361	Nuphar lutea_>4	В	В	В	В	В	В	В	В
362	Nymphaea alba_0_1	В	В	В	В	В	В	В	В
363	Nymphaea alba_1_2	В	В	В	В	В	В	В	В
364	Nymphaea alba_2_4	В	В	В	В	В	В	В	В
365	Nymphaea alba_>4	В	В	В	В	В	В	В	В
366	Nymphoides peltata_0_1	В	В	В	В	В	В	В	В
367	Nymphoides peltata_1_2	В	В	В	В	В	В	В	В
368	Nymphoides peltata_2_4	В	В	В	В	В	В	В	В
369	Peplis portula_0_1			В	В	В	Α	Α	Α
370	Peplis portula_1_2			В	В	В	Α	Α	Α
371	Persicaria amphibia_0_1	В	В	В	В	В	В	В	В
372	Persicaria amphibia_1_2	В	В	В	В	В	В	В	В
373	Persicaria amphibia_2_4	В	В	В	В	В	В	В	В
374	Persicaria amphibia_>4	В	В	В	В	В	В	В	В
375	Phalaris arundinacea_0_1	В	В	В	В	В	В	В	В
376	Phalaris arundinacea_1_2	В	В	В	В	В	В	В	В
377	Pilularia globulifera_0_1	Α	Α	Α	Α	Α	Α	Α	Α
378	Pistia stratiotes_0_1	С	С	С	С	С	С	С	С
379	Potamogeton acutifolius_0_1	С	С	С	В	В	В	В	Α
380	Potamogeton acutifolius_1_2	С	С	С	В	В	В	В	Α
381	Potamogeton acutifolius_2_4	С	С	С	В	В	Α	Α	Α
382	Potamogeton acutifolius_>4	С	C	C	В	В	Α	Α	Α
383	Potamogeton alpinus_0_1	A	Α	Α	Α	Α	A	A	Α
384	Potamogeton alpinus_1_2	A	Α	Α	Α	Α	Α	Α	Α
385	Potamogeton alpinus_2_4	A	Α	Α	Α	Α	Α	Α	Α
386	Potamogeton alpinus_>4	A	Α	Α	Α	Α	A	A	Α
387	Potamogeton berchtoldii_0_1	В	В	В	В	В	В	В	В
388	Potamogeton berchtoldii_1_2	В	В	В	В	В	В	В	В
389	Potamogeton berchtoldii_2_4	В	В	В	В	Α	В	Α	Α
390	Potamogeton berchtoldii_>4	В	В	Α	Α	Α	A	A	Α
391	Potamogeton compressus_0_1	С	С	С	В	В	В	A	Α
392	Potamogeton compressus_1_2	С	С	С	В	В	В	A	Α
393	Potamogeton compressus_2_4	С	С	С	В	В	В	A	Α
394	Potamogeton compressus_>4	С	С	С	В	В	В	A	Α
395	Potamogeton crispus_0_1	С	C C	С	С	С	С	С	С
396	Potamogeton crispus_1_2	С		С	С	В	С	С	В
397	Potamogeton crispus_2_4	С	С	С	С	В	С	С	В
398	Potamogeton crispus_>4	С	C	С	В	В	В	В	В
399	Potamogeton filiformis_0_1	A	Α	В	A	A	A	A	Α
400	Potamogeton filiformis_1_2	A	Α	В	A	A	A	A	Α
401	Potamogeton filiformis_2_4	A	Α	В	Α	A	A	A	Α
402	Potamogeton filiformis_>4	A	Α	В	Α	A	A	A	A
403	Potamogeton friesii_0_1	С	С	С	С	В	В	В	В
404	Potamogeton friesii 2 4	С	С	С	С	В	В	В	В
405	Potamogeton friesii_2_4	В	В	С	В	В	В	В	Α

lfd. Nr.	Taxon_Tiefenstufe	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	ТКр
406	Potamogeton friesii_>4	В	В	В	В	В	В	Α	Α
407	Potamogeton gramineus_0_1	А	Α	Α	Α	Α	Α	Α	Α
408	Potamogeton gramineus_1_2	А	Α	Α	Α	Α	Α	Α	Α
409	Potamogeton gramineus_2_4	Α	Α	Α	Α	Α	Α	Α	Α
410	Potamogeton gramineus_>4	А	Α	Α	Α	Α	Α	Α	Α
411	Potamogeton lucens_0_1	С	С	В	В	В	В	В	В
412	Potamogeton lucens_1_2	С	В	В	В	В	В	В	Α
413	Potamogeton lucens_2_4	В	В	В	В	Α	В	Α	Α
414	Potamogeton lucens_>4	В	В	Α	В	Α	Α	Α	Α
415	Potamogeton natans_0_1	В	Α	В	Α	Α	Α	Α	Α
416	Potamogeton natans_1_2	В	Α	В	Α	Α	Α	Α	Α
417	Potamogeton natans_2_4	В	Α	В	Α	Α	Α	Α	Α
418	Potamogeton natans_>4	В	Α	В	Α	Α	Α	Α	Α
419	Potamogeton nodosus_0_1	С	С	С	В	В	С	В	В
420	Potamogeton nodosus_1_2	С	С	С	В	В	С	В	В
421	Potamogeton nodosus_2_4	С	С	С	В	В	С	В	В
422	Potamogeton nodosus_>4	С	С	С	В	В	С	В	В
423	Potamogeton obtusifolius_0_1	С	С	В	В	В	В	В	В
424	Potamogeton obtusifolius_1_2	С	С	В	В	В	В	В	В
425	Potamogeton obtusifolius_2_4	С	С	В	В	В	В	В	В
426	Potamogeton obtusifolius_>4	С	С	В	В	В	В	В	В
427	Potamogeton pectinatus_0_1	С	С	С	С	С	В	В	В
428	Potamogeton pectinatus_1_2	С	С	C	С	В	В	В	В
429	Potamogeton pectinatus_2_4	С	С	C	В	В	В	В	В
430	Potamogeton pectinatus_>4	В	В	В	В	В	В	В	В
431	Potamogeton perfoliatus_0_1	В	В	В	В	В	В	В	В
432	Potamogeton perfoliatus_1_2	В	В	В	В	В	В	В	В
433	Potamogeton perfoliatus_2_4	В	В	В	В	В	В	В	В
434	Potamogeton perfoliatus_>4	В	В	В	В	В	В	В	В
435	Potamogeton polygonifolius_0_1			A	А	A	A	A	A
436	Potamogeton polygonifolius_1_2			Α	Α	Α	Α	Α	Α
437	Potamogeton polygonifolius_2_4			Α	Α	Α	Α	Α	Α
438	Potamogeton polygonifolius_>4			Α	Α	Α	Α	Α	Α
439	Potamogeton praelongus_0_1	В	Α	В	Α	Α	Α	Α	Α
440	Potamogeton praelongus_1_2	В	Α	В	Α	Α	Α	Α	Α
441	Potamogeton praelongus_2_4	В	Α	В	Α	Α	Α	Α	Α
442	Potamogeton praelongus_>4	В	Α	В	Α	Α	Α	Α	Α
443	Potamogeton pusillus_0_1	С	В	С	В	В	С	В	В
444	Potamogeton pusillus 1 2	С	В	С	В	В	В	В	В
445	Potamogeton pusillus_2_4	В	В	С	В	В	В	В	В
446	Potamogeton pusillus_>4	В	В	В	В	В	В	A	В
447	Potamogeton rutilus_0_1	A	Α	Α	A	Α	A	Α	Α
448	Potamogeton rutilus_1_2	A	Α	Α	Α	Α	Α	Α	Α
449	Potamogeton rutilus_2_4	A	Α	Α	Α	Α	Α	Α	Α
450	Potamogeton rutilus_>4	A	Α	Α	Α	Α	Α	Α	Α
451	Potamogeton trichoides_0_1	В	В	В	В	В	В	В	В
452	Potamogeton trichoides_1_2	В	В	В	Α	Α	a	A	A
453	Potamogeton trichoides_2_4	A	A	В	Α	Α	A	Α	Α
454	Potamogeton trichoides_>4	A	Α	В	Α	Α	Α	Α	Α
455	Potamogeton x angustifolius_0_1	A	Α	В	Α	Α	Α	Α	Α
456	Potamogeton x angustifolius_1_2	A	Α	В	Α	Α	Α	Α	Α
457	Potamogeton x angustifolius_2_4	A	Α	В	Α	Α	Α	Α	Α
458	Potamogeton x angustifolius_>4	A	Α	В	Α	Α	Α	Α	Α
459	Potamogeton x cognatus_0_1	В	В	-	Α	Α	Α	Α	Α
460	Potamogeton x cognatus_1_2	В	В		Α	Α	Α	Α	Α
461	Potamogeton x cognatus_1_2 Potamogeton x cognatus_2_4	В	В		Α	Α	A	A	Α
462	Potamogeton x cognatus_>4	В	В		Α	Α	A	A	Α
463	Potamogeton x cooperi_0_1	В	В	С	В	В	В	В	В
464	Potamogeton x cooperi_0_1 Potamogeton x cooperi_1_2	В	В	С	В	В	В	В	В
TU4		В	В	С	В	В	В	В	В
165									
465 466	Potamogeton x cooperi_2_4 Potamogeton x cooperi_>4	В	В	С	В	В	В	В	В

lfd. Nr.	Taxon_Tiefenstufe	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	ТКр
468	Potamogeton x nitens_1_2	В	В	В	В	Α	В	А	Α
469	Potamogeton x nitens_2_4	В	В	В	В	Α	В	А	Α
470	Potamogeton x nitens_>4	В	В	В	В	Α	В	Α	Α
471	Potamogeton x salicifolius_0_1	В	В	В	В	В	В	В	В
472	Potamogeton x salicifolius_1_2	В	В	В	В	В	В	В	В
473	Potamogeton x salicifolius_2_4	В	В	В	В	В	В	В	В
474	Potamogeton x salicifolius_>4	В	В	В	В	В	В	В	В
475	Potentilla palustris_0_1	В	В	В	В	В	В	В	В
476	Potentilla palustris_1_2	В	В	В	В	В	В	В	В
477	Potentilla palustris_2_4	В	В	В	В	В	В	В	В
478	Potentilla palustris_>4	В	В	В	В	В	В	В	В
479	Ranunculus aquatilis_0_1	В	В	В	В	В	В	В	В
480	Ranunculus aquatilis_1_2	В	В	В	В	В	В	В	В
481	Ranunculus aquatilis_2_4	В	В	В	В	В	В	В	В
482	Ranunculus aquatilis_>4	В	В	В	В	В	В	В	В
483	Ranunculus circinatus_0_1	С	С	С	С	C	С	С	С
484 485	Ranunculus circinatus_1_2	C	C	C	B B	В	B b	B B	В
486	Ranunculus circinatus_2_4 Ranunculus circinatus >4	С	С	С	В	В	В	В	В
487	Ranunculus flammula_0_1	A	A	A	А	А	А	А	А
488	Ranunculus fluitans_0_1	В	В	В	В	В	В	В	В
489	Ranunculus fluitans 1 2	В	В	В	В	В	В	В	В
490	Ranunculus fluitans 2 4	В	В	В	В	В	В	В	В
491	Ranunculus fluitans_>4	В	В	В	В	В	В	В	В
492	Ranunculus lingua_0_1	A	A	A	A	A	A	A	A
493	Ranunculus peltatus ssp. baudotii_0_1	C	C	C	В	В	В	В	В
494	Ranunculus peltatus ssp. baudotii_1_2	С	С	С	В	В	В	В	В
495	Ranunculus peltatus ssp. baudotii_2_4	C	С	С	В	В	В	В	В
496	Ranunculus peltatus ssp. baudotii_>4	С	C	C	В	В	В	В	В
497	Ranunculus peltatus_0_1	С	C	В	В	В	В	В	Α
498	Ranunculus peltatus_1_2	С	С	В	В	В	В	В	Α
499	Ranunculus peltatus_2_4	С	С	В	В	В	В	В	Α
500	Ranunculus peltatus_>4	С	С	В	В	В	В	В	Α
501	Ranunculus penicillatus_0_1	В	В	В	В	В	Α	Α	Α
502	Ranunculus penicillatus_1_2	В	В	В	В	В	Α	Α	Α
503	Ranunculus penicillatus_2_4	В	В	В	В	В	Α	Α	Α
504	Ranunculus penicillatus_>4	В	В	В	В	В	Α	Α	Α
505	Ranunculus reptans_0_1	В	В	В	В	В	В	В	В
506	Ranunculus reptans_1_2	В	В	В	В	В	В	В	В
507	Ranunculus trichophyllus ssp. eradicatus_0_1	Α	Α		Α	Α	Α	Α	Α
508	Ranunculus trichophyllus ssp. eradicatus_1_2	Α	Α		Α	Α	Α	Α	Α
509	Ranunculus trichophyllus ssp. eradicatus_2_4	Α	Α		Α	Α	Α	Α	Α
510	Ranunculus trichophyllus ssp. eradicatus_>4	Α	Α		Α	Α	Α	Α	Α
511	Ranunculus trichophyllus ssp. rionii_0_1	C	С	C	В	В	В	В	Α
512	Ranunculus trichophyllus ssp. rionii_1_2	С	С	С	В	В	В	В	Α
513	Ranunculus trichophyllus ssp. rionii_2_4	С	С	С	В	В	В	В	Α
514	Ranunculus trichophyllus ssp. rionii_>4	С	С	С	В	В	В	В	Α
515	Ranunculus trichophyllus ssp. trichophyllus_0_1	C	C C	C C	В	В	В	В	Α
516 517	Ranunculus trichophyllus ssp. trichophyllus_1_2	С	С	С	B B	B B	B B	B B	Α
	Ranunculus trichophyllus ssp. trichophyllus_2_4								Α
518 519	Ranunculus trichophyllus ssp. trichophyllus_>4	C	C C	C C	B B	B B	B B	B B	Α
519	Ranunculus trichophyllus_0_1 Ranunculus trichophyllus_1_2	С	С	С	В	В	В	В	A A
520	Ranunculus trichophyllus_1_2 Ranunculus trichophyllus_2_4	С	С	С	В	В	В	В	A
522	Ranunculus trichophyllus_>4	С	С	С	В	В	В	В	A
523	Ranunculus x cookii_0_1	С	С	С	В	В	В	В	В
524	Ranunculus x cookii_0_1 Ranunculus x cookii_1_2	С	С	С	В	В	В	В	В
525	Ranunculus x cookii_1_2	С	С	С	В	В	В	В	В
526	Ranunculus x cookii_>4	С	С	С	В	В	В	В	В
527	Rhynchostegium riparioides_0_1	В	В	С	В	В	В	В	В
528	Rhynchostegium riparioides_1_2	В	В	С	В	В	В	В	В
529	Rhynchostegium riparioides_2_4	В	В	С	В	В	В	В	В

lfd. Nr.	Taxon_Tiefenstufe	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	ТКр
530	Rhynchostegium riparioides_>4	В	В	С	В	В	В	В	В
531	Riccia fluitans_0_1	В	В	В	В	В	Α	Α	Α
532	Riccia fluitans_1_2	В	В	В	В	В	Α	Α	Α
533	Ricciocarpos natans_0_1	В	В	В	В	В	В	В	В
534	Ricciocarpos natans_1_2	В	В	В	В	В	В	В	В
535	Rorippa amphibia_0_1	В	В	В	В	В	В	В	В
536	Rorippa amphibia_1_2	В	В	В	В	В	В	В	В
537	Rumex hydrolapathum_0_1	В	В	В	В	В	В	В	В
538	Rumex hydrolapathum_1_2	В	В	В	В	В	В	В	В
539	Rumex hydrolapathum_2_4	В	В	В	В	В	В	В	В
540	Sagittaria sagittifolia_0_1	С	С	С	С	В	С	С	В
541	Sagittaria sagittifolia_1_2	С	С	С	С	В	С	С	В
542	Sagittaria sagittifolia_2_4	С	С	С	С	В	С	С	В
543	Sagittaria sagittifolia_>4	С	С	С	С	В	С	С	В
544	Salvinia natans_0_1	С	С	С	В	В	В	В	В
545	Salvinia natans_1_2	С	С	С	В	В	В	В	В
546	Schoenoplectus lacustris_0_1	В	В	В	В	В	В	В	В
547	Schoenoplectus lacustris_1_2	В	В	В	В	В	В	В	В
548	Schoenoplectus lacustris_2_4	В	В	В	В	В	В	В	В
549	Schoenoplectus lacustris_>4	В	В	В	В	В	В	В	В
550	Schoenoplectus tabernaemontani_0_1	В	В	В	В	В	В	В	В
551	Schoenoplectus tabernaemontani_1_2	В	В	В	В	В	В	В	В
552	Schoenoplectus tabernaemontani_2_4	В	В	В	В	В	В	В	В
553	Schoenoplectus tabernaemontani_>4	В	В	В	В	В	В	В	В
554	Sium latifolium_0_1	В	В	В	В	В	В	В	В
555	Sium latifolium 1 2	В	В	В	В	В	В	В	В
556	Solanum dulcamara_0_1	В	В	В	В	В	В	В	В
557	Solanum dulcamara_1_2	В	В	В	В	В	В	В	В
558	Sparganium emersum_0_1	В	В	В	В	В	В	В	В
559	Sparganium emersum_1_2	В	В	В	В	В	В	В	В
560	Sparganium emersum_2_4	В	В	В	В	В	В	В	В
561	Sparganium emersum_>4	В	В	В	В	В	В	В	В
562	Sparganium erectum_0_1	В	В	В	В	В	В	В	В
563	Sparganium erectum_1_2	В	В	В	В	В	В	В	В
564	Sparganium erectum_2_4	В	В	В	В	В	В	В	В
565	Sparganium erectum_>4	В	В	В	В	В	В	В	В
566	Sphagnum_0_1			В					
567	Sphagnum_1_2			В					
568	Sphagnum_2_4			В					
569	Sphagnum_>4			В					
570	Spirodela polyrhiza_0_1	С	С	С	С	С	С	С	В
571	Spirodela polyrhiza_1_2	С	С	С	С	С	С	С	В
572	Spirodela polyrhiza_2_4	С	С	С	С	С	С	С	В
573	Stachys palustris_0_1	В	В	В	В	В	В	В	В
574	Stachys palustris_1_2	В	В	В	В	В	В	В	В
575	Stratiotes aloides_0_1	В	Α		В	A	A	A	Α
576	Stratiotes aloides_1_2	В	Α		В	Α	Α	Α	Α
577	Stratiotes aloides_2_4	В	Α		В	Α	Α	Α	Α
578	Stratiotes aloides_>4	В	Α		В	Α	Α	Α	Α
579	Tolypella glomerata_0_1	В	a		Α	Α	a	Α	Α
580	Tolypella glomerata_1_2	a	a		Α	Α	a	Α	Α
581	Tolypella glomerata_2_4	a	A		Α	Α	A	Α	Α
582	Tolypella glomerata_>4	A	Α		Α	Α	Α	Α	Α
583	Tolypella intricata_0_1	A	Α	Α	Α	Α	Α	Α	Α
584	Tolypella intricata_1_2	A	Α	Α	Α	Α	Α	Α	Α
585	Tolypella intricata_2_4	A	Α	Α	Α	Α	Α	Α	Α
586	Tolypella intricata_>4	A	Α	Α	Α	Α	Α	Α	Α
587	Tolypella prolifera_0_1	A	Α		Α	Α	Α	Α	Α
588	Tolypella prolifera_1_2	A	Α		Α	Α	Α	Α	Α
589	Tolypella prolifera_2_4	A	Α		Α	Α	Α	Α	Α
	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
590	Tolypella prolifera_>4	Α	Α		Α	Α	Α	Α	Α

lfd. Nr.	Taxon Tiefenstufe	AK(s)	АКр	MTS	MKg	МКр	TKg13	TKg10	ТКр
592	Trapa natans_1_2	В	В	В	В	В	В	В	В
593	Trapa natans_2_4	В	В	В	В	В	В	В	В
594	Trapa natans_>4	В	В	В	В	В	В	В	В
595	Typha angustifolia_0_1	В	В	В	В	В	В	В	В
596	Typha angustifolia_1_2	В	В	В	В	В	В	В	В
597	Typha angustifolia_2_4	В	В	В	В	В	В	В	В
598	Typha angustifolia_>4	В	В	В	В	В	В	В	В
599	Typha latifolia_0_1	В	В	В	В	В	В	В	В
	Typha latifolia_1_2	В	В	В	В	В	В	В	В
600					 	В	В	В	
601	Typha latifolia_2_4	В	В	В	В				В
602	Typha latifolia_>4	В	В	В	В	В	В	В	В
603	Utricularia australis_0_1	В	Α	В	В	A	В	В	Α
604	Utricularia australis_1_2	В	Α	В	В	Α	В	В	Α
605	Utricularia australis_2_4	A	A	В	Α	Α	В	Α	Α
606	Utricularia australis_>4	A	Α	В	Α	Α	A	Α	Α
607	Utricularia intermedia_0_1	A	A	A	A	Α	A	Α	Α
608	Utricularia intermedia_1_2	Α	Α	Α	Α	Α	Α	Α	Α
609	Utricularia intermedia_2_4	Α	Α	Α	Α	Α	Α	Α	Α
610	Utricularia intermedia_>4	Α	Α	Α	Α	Α	Α	Α	Α
611	Utricularia minor_0_1	A	Α	Α	Α	Α	Α	Α	Α
612	Utricularia minor_1_2	A	Α	Α	Α	Α	Α	Α	Α
613	Utricularia minor_2_4	Α	Α	Α	Α	Α	Α	Α	Α
614	Utricularia minor_>4	Α	Α	Α	Α	Α	Α	Α	Α
615	Utricularia ochroleuca_0_1	Α	Α	Α	Α	Α	Α	Α	Α
616	Utricularia ochroleuca_1_2	Α	Α	Α	Α	Α	Α	Α	Α
617	Utricularia ochroleuca_2_4	Α	Α	Α	Α	Α	Α	Α	Α
618	Utricularia ochroleuca_>4	Α	Α	Α	Α	Α	Α	Α	Α
619	Utricularia stygia_0_1	Α	Α	Α	Α	Α	Α	Α	Α
620	Utricularia stygia_1_2	Α	Α	Α	Α	Α	Α	Α	Α
621	Utricularia stygia_2_4	Α	Α	Α	Α	Α	Α	Α	Α
622	Utricularia stygia_>4	Α	Α	Α	Α	Α	Α	Α	Α
623	Utricularia vulgaris_0_1	В	В	В	В	Α	В	В	Α
624	Utricularia vulgaris_1_2	В	В	В	В	Α	В	Α	Α
625	Utricularia vulgaris_2_4	Α	Α	В	Α	Α	a	Α	Α
626	Utricularia vulgaris_>4	Α	Α	В	Α	Α	Α	Α	Α
627	Vallisneria spiralis_0_1	С	С	С	С	С	С	С	C
628	Vallisneria spiralis_1_2	С	С	С	С	С	С	С	C
629	Vallisneria spiralis_2_4	С	С	С	С	С	С	С	С
630	Vallisneria spiralis_>4	C	С	С	С	С	С	C	С
631	Veronica anagallis-aquatica_0_1	В	В	В	В	В	В	В	В
632	Veronica anagallis-aquatica_1_2	В	В	В	В	В	В	В	В
633	Veronica anagallis-aquatica_2_4	В	В	В	В	В	В	В	В
634	Veronica anagallis-aquatica_>4	В	В	В	В	В	В	В	В
635	Warnstorfia fluitans_0_1	В	В	Α	В	В	В	В	В
636	Warnstorfia fluitans_1_2	В	В	Α	В	В	В	В	В
637	Warnstorfia fluitans_2_4	В	В	Α	В	В	В	В	В
638	Warnstorfia fluitans_>4	В	В	Α	В	В	В	В	В
639	Zannichellia palustris_0_1	С	С	С	С	С	С	С	С
640	Zannichellia palustris_1_2	С	С	С	В	В	С	С	В
641	Zannichellia palustris_2_4	В	В	С	В	В	В	В	В
642	Zannichellia palustris_>4	В	В	С	В	В	В	В	В

Typ AK(s) – Karbonatisch geprägte Seen der Alpen und des Alpenvorlandes inkl. Untertyp AKs - Steilufer

Voraussetzungen für die Bewertung

Die **Gesamtquantität** der submersen Makrophyten an der Probestelle muss **mindestens 55** betragen. Unterhalb einer Gesamtquantität von 55 gilt der Index als nicht gesichert. Der Anteil von *Nuphar lutea, Nymphaea alba* und *Persicaria amphibia* an der Gesamtquantität muss unter 80% liegen, anderenfalls gilt der Index ebenfalls als nicht gesichert. Er kann dann nur als Tendenz bzw. zur Unterstützung bei der Bewertung mit anderen Organismengruppen herangezogen werden. Können natürliche Ursachen ausgeschlossen werden, so muss in beiden Fällen die Möglichkeit einer Makrophytenverödung geprüft werden. Liegt eine Makrophytenverödung vor, so wird der RI-Wert auf -100 gesetzt, dieTeilkomponente Makrophyten ergibt dann eine gesicherte Bewertung (siehe auch Kapitel 6.5.1.1 und 6.5.1.2).

Erreicht der Anteil der nicht eingestuften Arten mindesten 25%, so gilt die Bewertung ebenfalls als nicht gesichert.

An Stellen des Untertyps **AKs** kann das **Fehlen von Makrophyten** nicht zu Aussagen über die Degradierung herangezogen werden.

Zusatzkriterien

Die Bezugsgröße des RI ist bei der Anwendung der Zusatzkriterien immer der nach Gleichung 1 ermittelte Wert. Kommen mehrere Zusatzkriterien zur Anwendung, addieren sich die Abzüge.

- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze zwischen 5 m und 8 m verringert sich der RI um 20
- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze von weniger als 5 m verringert sich der RI um 50
- bei einem RI > -50 und Dominanzbeständen (mind. 80% Quantität) folgender Arten verringert sich der RI um 50:

Elodea canadensis/ nuttallii oder Myriophyllum spicatum oder Najas marina subsp. intermedia

• wird der RI durch die Anwendung mehrerer Kriterien <-100, wird er auf -100 gesetzt

Typ AKp

Voraussetzungen für die Bewertung

Für eine gesicherte Bewertung muss die Gesamtquantität der submersen Makrophyten an der Probestelle mindestens 35 betragen. Der Anteil von *Nuphar lutea, Nymphaea alba* und *Persicaria amphibia* muss unter 80% liegen. Wird eine dieser beiden Bedingungen nicht erfüllt, muss der Index als nicht gesichert gelten. Können natürliche Ursachen ausgeschlossen werden, so muss die Möglichkeit einer Makrophytenverödung geprüft werden. Liegt eine Makrophytenverödung vor, so wird der RI-Wert auf -100 gesetzt, die Teilkomponente Makrophyten ergibt dann eine gesicherte Bewertung (siehe auch Kapitel 6.5.1.1 und 6.5.1.2).

Erreicht der Anteil der nicht eingestuften Arten mindesten 25%, so gilt die Bewertung ebenfalls als nicht gesichert.

Zusatzkriterien

- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze von weniger als 4,5 m verringert sich der RI um 50, wenn der See eine maximale Tiefe von mindestens 4,5 m aufweist
- bei Dominanzbeständen (mind. 80% der Gesamtquantität) folgender Arten verringert sich der RI um 50.

Elodea canadensis/ nuttallii oder Myriophyllum spicatum oder Najas marina subsp. intermedia

• wird der RI durch die Anwendung mehrerer Kriterien <-100, wird er auf -100 gesetzt

Typ MTS – Silikatisch geprägte Seen der Mittelgebirge und des Tieflandes sowie Gewässer mit einem pH-Wert <6 (Untertyp MTSs)

Voraussetzungen für die Bewertung

Die **Gesamtquantität** der submersen Makrophyten an der Probestelle muss **mindestens 55** betragen. Unterhalb einer Gesamtquantität von 55 gilt der Index als nicht gesichert. Der Anteil von *Nuphar lutea, Nymphaea alba* und *Persicaria amphibia* an der Gesamtquantität muss unter 80% liegen, anderenfalls gilt der Index ebenfalls als nicht gesichert. Er kann dann nur als Tendenz bzw. zur Unterstützung bei der Bewertung mit anderen Organismengruppen herangezogen werden. Können natürliche Ursachen ausgeschlossen werden, so muss in beiden Fällen die Möglichkeit einer Makrophytenverödung geprüft werden. Liegt eine Makrophytenverödung vor, so wird der RI-Wert auf -100 gesetzt, dieTeilkomponente Makrophyten ergibt dann eine gesicherte Bewertung (siehe auch Kapitel 6.5.1.1 und 6.5.1.2).

- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze zwischen 5 m und 8 m verringert sich der RI um 20
- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze von weniger als 5 m verringert sich der RI um 50
- bei Dominanzbeständen (mind. 80% Quantität) folgender Arten verringert sich der RI um 50:

Elodea canadensis/ nuttallii oder

Myriophyllum spicatum oder

Najas marina subsp. intermedia

• wird der RI durch die Anwendung mehrerer Kriterien <-100, wird er auf -100 gesetzt

Modul Versauerung

Für natürliche Gewässer sowie für künstliche und erheblich veränderte Gewässer deren höchstes ökologisches Potential nicht dem sauren Zustand entspricht gelten zusätzlich zu den oben genannten folgende Zusatzkriterien die den sauren Zustand eines Sees indizieren:

- erreicht die Gesamtquantität der Taxa *Juncus bulbosus* und *Sphagnum* spec zusammen mindestens 125, so verringert sich der RI um 50
- bei einer Gesamtquantität der Taxa *Juncus bulbosus* und *Sphagnum* spec zwischen 50 und 125, verringert sich der RI um 30
- wird der RI durch die Anwendung der Kriterien <-100, wird er auf -100 gesetzt

Kommt in einem Gewässer mit einem karbonatisch geprägten Einzugsgebiet und der Referenz eines karbonatischen Typs ein Kriterium des Versauerungsmoduls zur Anwendung, muss entschieden werden, ob dieser See einer Entwicklung in den neutralen Bereich unterliegt (z.B. nach Aufgabe der Nutzung, die den niedrigen pH-Wert bewirkt). Ist dies der Fall, wird das Gewässer dem Untertyp MTSs zugeordnet, die genannten Zusatzkriterien des Versauerungsmoduls werden ebenfalls berücksichtigt.

Anmerkung: Bei der Bewertung polymiktischer Seen muss die Plausibilität der Bewertungsergebnisse im Einzelfall kritisch geprüft werden. Die Bewertung polymiktischer Seen muss kritisch auf Plausibilität der Bewertungsergebnisse im Einzellfall geprüft werden. Dieser Typ konnte aufgrund der wenigen Seen im Datenbestand nicht überarbeitet werden.

Typ MKg – Karbonatische geprägte geschichtete Seen der Ökoregion Mittelgebirge (inkl. Oberrheinisches Tiefland)

Die **Gesamtquantität** der submersen Makrophyten an der Probestelle muss **mindestens 55** betragen. Unterhalb einer Gesamtquantität von 55 gilt der Index als nicht gesichert. Der Anteil von *Nuphar lutea, Nymphaea alba* und *Persicaria amphibia* an der Gesamtquantität muss unter 80% liegen, anderenfalls gilt der Index ebenfalls als nicht gesichert. Er kann dann nur als Tendenz bzw. zur Unterstützung bei der Bewertung mit anderen Organismengruppen herangezogen werden. Können natürliche Ursachen ausgeschlossen werden, so muss in beiden Fällen die Möglichkeit einer Makrophytenverödung geprüft werden. Liegt eine Makrophytenverödung vor, so wird der RI-Wert auf -100 gesetzt, die Teilkomponente Makrophyten ergibt dann eine gesicherte Bewertung (siehe auch Kapitel 6.5.1.1 und 6.5.1.2).

Erreicht der Anteil der nicht eingestuften Arten mindesten 25%, so gilt die Bewertung ebenfalls als nicht gesichert.

Zusatzkriterien

- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze von weniger als 4 m verringert sich der RI um 50
- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze zwischen 4 m und 8m verringert sich der RI um 20
- bei Dominanzbeständen (mind. 80% Quantität) folgender Arten verringert sich der RI um 50:

Elodea canadensis/ nuttallii oder

Myriophyllum spicatum oder

Potamogeton pectinatus oder

Najas marina ssp. intermedia

• wird der RI durch die Anwendung mehrerer Kriterien <-100, wird er auf -100 gesetzt

Typ MKp – Karbonatische geprägte polymiktische Seen der Ökoregion Mittelgebirge (inkl. Oberrheinisches Tiefland)

Für eine gesicherte Bewertung muss die Gesamtquantität der submersen Makrophyten an der Probestelle mindestens 35 betragen. Der Anteil von *Nuphar lutea, Nymphaea alba* und *Persicaria amphibia* muss unter 80% liegen. Wird eine dieser beiden Bedingungen nicht erfüllt, muss der Index als nicht gesichert gelten. Können natürliche Ursachen ausgeschlossen werden, so muss die Möglichkeit einer Makrophytenverödung geprüft werden. Liegt eine Makrophytenverödung vor, so wird der RI-Wert auf -100 gesetzt, die Teilkomponente Makrophyten ergibt dann eine gesicherte Bewertung (siehe auch Kapitel 6.5.1.1 und 6.5.1.2).

Die Bezugsgröße des RI ist bei der Anwendung der Zusatzkriterien immer der nach Gleichung 1 ermittelte Wert. Kommen mehrere Zusatzkriterien zur Anwendung, addieren sich die Abzüge.

- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze von weniger als 4 m verringert sich der RI um 50, wenn der See eine maximale Tiefe von mind. 4 m aufweist
- bei einem RI > -50 und Dominanzbeständen (mind. 80% Quantität) folgender Arten verringert sich der RI um 50:

Ceratophyllum demersum oder Elodea canadensis/ nuttallii oder Myriophyllum spicatum oder Potamogeton pectinatus oder Najas marina subsp. intermedia

• wird der RI durch die Anwendung mehrerer Kriterien <-100, wird er auf -100 gesetzt

Typ TKg10 – Karbonatisch geprägte geschichtete Seen des Norddeutschen Tieflandes mit relativ großem Einzugsgebiet

Voraussetzungen für die Bewertung

Die **Gesamtquantität** der submersen Makrophyten an der Probestelle muss **mindestens 55** betragen. Unterhalb einer Gesamtquantität von 55 gilt der Index als nicht gesichert. Der Anteil von *Nuphar lutea, Nymphaea alba* und *Persicaria amphibia* an der Gesamtquantität muss unter 80% liegen, anderenfalls gilt der Index ebenfalls als nicht gesichert. Er kann dann nur als Tendenz bzw. zur Unterstützung bei der Bewertung mit anderen Organismengruppen herangezogen werden. Können natürliche Ursachen ausgeschlossen werden, so muss in beiden Fällen die Möglichkeit einer Makrophytenverödung geprüft werden. Liegt eine Makrophytenverödung vor, so wird der RI-Wert auf -100 gesetzt, dieTeilkomponente Makrophyten ergibt dann eine gesicherte Bewertung (siehe auch Kapitel 6.5.1.1 und 6.5.1.2).

- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze zwischen 4 m und 6 m veringert sich der RI um 10
- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze zwischen 2,5 m und 4 m veringert sich der RI um 20
- bei einer mittleren unteren Vegetationsgrenze von weniger als 2,5 m verringert sich der RI um 50
- bei einem RI > -50 und Dominanzbeständen (mind. 80% Quantität) folgender Arten verringert sich der RI um 50:
- Elodea canadensis/ nuttallii oder
- *Myriophyllum spicatum* oder
- Najas marina subsp. intermedia oder
- Potamogeton pectinatus oder
- Ceratophyllum demersum oder
- Ceratophyllum submersum
- wird der RI durch die Anwendung mehrerer Kriterien <-100, wird er auf -100 gesetzt

Typ TKg13 – Karbonatisch geprägte geschichtete Seen des Norddeutschen Tieflandes mit relativ kleinem Einzugsgebiet

Voraussetzungen für die Bewertung

Die **Gesamtquantität** der submersen Makrophyten an der Probestelle muss **mindestens 55** betragen. Unterhalb einer Gesamtquantität von 55 gilt der Index als nicht gesichert. Der Anteil von *Nuphar lutea, Nymphaea alba* und *Persicaria amphibia* an der Gesamtquantität muss unter 80% liegen, anderenfalls gilt der Index ebenfalls als nicht gesichert. Er kann dann nur als Tendenz bzw. zur Unterstützung bei der Bewertung mit anderen Organismengruppen herangezogen werden. Können natürliche Ursachen ausgeschlossen werden, so muss in beiden Fällen die Möglichkeit einer Makrophytenverödung geprüft werden. Liegt eine Makrophytenverödung vor, so wird der RI-Wert auf -100 gesetzt, die Teilkomponente Makrophyten ergibt dann eine gesicherte Bewertung (siehe auch Kapitel 6.5.1.1 und 6.5.1.2).

- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze zwischen 5 m und 8 m veringert sich der RI um 10
- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze zwischen 2,5 m und 5 m veringert sich der RI um 20
- bei einer mittleren unteren Vegetationsgrenze von weniger als 2,5 m verringert sich der RI um 50
- bei einem RI > -50 und Dominanzbeständen (mind. 80% Quantität) folgender Arten verringert sich der RI um 50:

Elodea canadensis/ nuttallii oder

Myriophyllum spicatum oder

Najas marina subsp. intermedia oder

Potamogeton pectinatus oder

Ceratophyllum demersum oder

Ceratophyllum submersum

• wird der RI durch die Anwendung mehrerer Kriterien <-100, wird er auf -100 gesetzt

Typ TKp - Karbonatisch geprägte polymiktische Seen des Norddeutschen Tieflandes

Voraussetzungen für die Bewertung

Für eine gesicherte Bewertung muss die Gesamtquantität der submersen Makrophyten an der Probestelle mindestens 35 betragen. Der Anteil von *Nuphar lutea, Nymphaea alba* und *Persicaria amphibia* muss unter 80% liegen. Wird eine dieser beiden Bedingungen nicht erfüllt, muss der Index als nicht gesichert gelten. Können natürliche Ursachen ausgeschlossen werden, so muss die Möglichkeit einer Makrophytenverödung geprüft werden. Liegt eine Makrophytenverödung vor, so wird der RI-Wert auf -100 gesetzt, die Teilkomponente Makrophyten ergibt dann eine gesicherte Bewertung (siehe auch Kapitel 6.5.1.1 und 6.5.1.2).

- bei einem RI > 0 und einer mittleren unteren Vegetationsgrenze zwischen 2,5 m und 4 m verringert sich der RI um 10, wenn der See eine maximale Tiefe von mindestens 4 m aufweist.
- bei einer mittleren unteren Vegetationsgrenze von weniger als 2,5 m verringert sich der RI um 50, wenn der See eine maximale Tiefe von mindestens 2,5 m aufweist
- bei einem RI > -50 und Dominanzbeständen (mind. 80% Quantität) folgender Arten verringert sich der RI um 50:

Elodea canadensis/ nuttallii oder

Myriophyllum spicatum oder

Najas marina subsp. intermedia oder

Potamogeton pectinatus oder

Ceratophyllum demersum oder

Ceratophyllum submersum

• wird der RI durch die Anwendung mehrerer Kriterien <-100, wird er auf -100 gesetzt

6.5.2 Diatomeen

Die Bewertung der Diatomeenbiozönose setzt sich aus zwei Modulen zusammen, einem Modul "Trophie-Index" sowie dem Modul "Referenzartenquotient" (RAQ).

6.5.2.1 Sicherungskriterien

Die Grundlagen für ein gesichertes Bewertungsergebnis werden bei der Teilkomponente Diatomeen bereits bei der mikroskopischen Auswertung geschaffen (Kapitel 6.3.2.4 und 6.3.2.5). Bei der rechnerischen Auswertung der Daten werden diese Kriterien geprüft.

Sicherungskriterium Bestimmungstiefe

Proben können zur Bewertung nicht herangezogen werden, wenn der Anteil nicht bestimmbarer (sp., spp.) und/oder nicht eindeutig bestimmbarer Formen (cf., aff.) einen Wert von 5 % überschreitet (siehe Kapitel 6.3.2.5).

Sicherungskriterium Gesamthäufigkeit

Durch dieses Kriterium wird vor der Berechnung sichergestellt, dass es sich um vollständige Proben handelt, indem die Befunde, die eine Gesamthäufigkeit von < 98% oder > 102% aufweisen, von der Berechnung ausgeschlossen werden. Proben mit einem hohen Anteil planktischer Diatomeen, die bei der Zählung nicht berücksichtigt werden sollen sowie eventuelle Datenübertragungs- oder Eingabefehler werden so erkannt und die Ergebnisse als ungesichert gekennzeichnet.

Sicherungskriterium aerophile Taxa

Übersteigt der Anteil aerophiler Taxa in einem Präparat den Wert von fünf Prozent, muss von einem starken aerischen Einfluss ausgegangen werden, der die Bewertung überlagert oder zumindest stark beeinflusst. Daher können derartige Proben nicht gesichert bewertet werden.

Diese Situation ist bei Fließgewässern nach steigenden Abflüssen häufig gegeben, aber auch bei Seen mit heftigerem Wellenschlag und vor allem bei Talsperren besteht infolge von Stauspiegelschwankungen die Gefahr, dass die Diatomeenproben aus Tiefen entnommen werden, die im nicht dauerhaft überfluteten oder wechselfeuchten Bereich liegen. Derartige Litoralstellen sind mit dem vorliegenden Verfahren nicht sicher bewertbar. Die als aerophil zu charakterisierenden Diatomeentaxa sind in Tabelle 18 zu finden. Zusätzliche Angaben zum aerophilen Charakter der Taxa können KRAMMER & LANGE-BERTALOT (1989-1991) entnommen werden.

Tabelle 18: Aerophile Taxa nach LANGE-BERTALOT (1996) und HILDEBRAND (1991)

lfd. Nr.	DV-Nr.	Taxon	Autor
1	6247	Achnanthes coarctata	(BREBISSON) GRUNOW
2	6286	Amphora montana	KRASSKE
3	6287	Amphora normannii	RABENHORST
4	16692	Denticula creticola	(OESTRUP) LANGE-BERTALOT & KRAMMER
5	6344	Diploneis minuta	PETERSEN
6	16264	Hantzschia abundans	LANGE-BERTALOT
7	6084	Hantzschia amphioxys	(EHRENBERG) GRUNOW
8	6802	Hantzschia elongata	(HANTZSCH) GRUNOW
9	16267	Hantzschia graciosa	LANGE-BERTALOT
10	16271	Hantzschia subrupestris	LANGE-BERTALOT
11	16276	Hantzschia vivacior	LANGE-BERTALOT
12	6805	Melosira dickiei	(THWAITES) KUETZING
13	6449	Navicula aerophila	KRASSKE
14	6458	Navicula brekkaensis	PETERSEN
15	6467	Navicula cohnii	(HILSE) LANGE-BERTALOT
16	6858	Navicula contenta	GRUNOW
17	16003	Navicula egregia	HUSTEDT
18	6489	Navicula gallica var. perpusilla	(GRUNOW) LANGE-BERTALOT
19	6492	Navicula gibbula	CLEVE
20	6504	Navicula insociabilis	KRASSKE
21	6028	Navicula mutica	KUETZING
22	16020	Navicula nivalis	EHRENBERG
23	16021	Navicula nivaloides	BOCK
24	16022	Navicula nolensoides	BOCK
25	16025	Navicula paramutica	BOCK
26	16026	Navicula parsura	HUSTEDT
27	6013	Navicula pelliculosa	(BREBISSON) HILSE
28	6528	Navicula pseudonivalis	BOCK
29	16360	Navicula pusilla var. incognita	(KRASSKE) LANGE-BERTALOT
30	16366	Navicula saxophila	BOCK
31	16036	Navicula subadnata	HUSTEDT
32	16375	Navicula suecorum var. dismutica	(HUSTEDT) LANGE-BERTALOT
33	6569	Neidium minutissimum	KRASSKE
34	6574	Nitzschia aerophila	HUSTEDT
35	16393	Nitzschia bacillariaeformis	HUSTEDT
36	6921	Nitzschia debilis	ARNOTT
37	16407	Nitzschia epithemoides var. disputata	(CARTER) LANGE-BERTALOT
38	16050	Nitzschia harderi	HUSTEDT
39	16053	Nitzschia modesta	HUSTEDT
40	6614	Nitzschia terrestris	(PETERSEN) HUSTEDT
41	16453	Nitzschia valdestriata	ALEEM & HUSTEDT
42	16460	Orthoseira dendroteres	(EHRENBERG) CRAWFORD
43	16060	Orthoseira roeseana	(RABENHORST) O'MEARA
44	6148	Pinnularia borealis	EHRENBERG
45	6635	Pinnularia frauenbergiana	REICHARDT
46	6645	Pinnularia krookii	(GRUNOW) CLEVE
47	16473	Pinnularia lagerstedtii	(CLEVE) CLEVE-EULER

lfd. Nr.	DV-Nr.	Taxon	Autor
48	6654	Pinnularia obscura	KRASSKE
49	6225	Simonsenia delognei	(GRUNOW) LANGE-BERTALOT
50	6679	Stauroneis agrestis	PETERSEN
51	16081	Stauroneis borrichii	(PETERSEN) LUND
52	16558	Stauroneis gracillima	HUSTEDT
53	16083	Stauroneis lundii	HUSTEDT
54	16084	Stauroneis muriella	LUND
55	6685	Stauroneis obtusa	LAGERSTEDT
56	16095	Surirella terricola	LANGE-BERTALOT & ALLES

Sicherungskriterien innerhalb der Bewertungsmodule

Die Sicherungskriterien für die einzelnen Bewertungsmodule sind in den jeweiligen Kapiteln (6.5.2.2 und 6.5.2.3) beschrieben.

6.5.2.2 Modul "Trophie-Index"

Für die Seen Süddeutschlands und des silikatischen Mittelgebirges (Typen 1 bis 4 sowie 8 und 9 nach MATHES et al. 2002) wird der Trophieindex nach HOFMANN (1994, 1999) berechnet, hier TI_{Süd} genannt. Für die Seen des Norddeutschen Tieflandes wurde ein Trophieindex (DIPA) entwickelt, der an die Verhältnisse der Seen der Typen 10 bis 14 nach MATHES et al. (2002) angepasst wurde (Schönfelder et al. unveröffentlicht). Dieser wird mit geringfügiger Abweichung für die Bewertung der genannten Seetypen sowie für die Gewässer des karbonatischen Mittelgebirges eingesetzt, hier TI_{Nord} genannt.

Trophie-Index nach HOFMANN (1999) TI_{Süd}

Anhand der trophischen Kenngrößen (Tabelle 19) der an der zu bewertenden Litoralstelle registrierten Arten und deren prozentualen Häufigkeiten wird der Trophie-Index nach HOFMANN (1999) berechnet (Gleichung 2). Voraussetzung ist eine ausreichende Zahl indikativer Arten. Sind weniger als zehn indikative Arten in der Probe vorhanden, muss der Trophie-Index als nicht gesichert gelten. In diesem Fall kann lediglich eine ungesicherte Bewertung des Teilmoduls Diatomeen vorgenommen werden.

Gleichung 2: Trophie-Index nach HOFMANN (1999) TI_{Süd}

$$TI_{Siid} = rac{\displaystyle\sum_{i=1}^{n} H_{i} * G_{i} * T_{i}}{\displaystyle\sum_{i=1}^{n} H_{i} * G_{i}} = rac{TI_{Siid}}{H_{i}} = Prozentuale H \ddot{a}ufigkeit der i-ten Art} \ \displaystyle\sum_{i=1}^{n} H_{i} * G_{i} = Gewichtung der i-ten Art} \ T_{i} = Trophiewert der i-ten Art}$$

Tabelle 19: Trophische Kenngrößen nach HOFMANN (1999) TI_{Süd}

16-1 **	D)/A	T	T	Causisles
lfd Nr	DVNr	Taxon	Trophiewert	
1	16105	Achnanthes bahusiensis	4,5	3
2	6056	Achnanthes catenata	4,0	2
3	6180	Achnanthes clevei	3,5	2
4	16111	Achnanthes daonensis	2,5	1
5	6248	Achnanthes delicatula	5,0	3
6	16112	Achnanthes delicatula ssp. engelbrechtii	5,0	3
7	16114	Achnanthes didyma	1,5	3
8	6986	Achnanthes exigua	4,0	2
9	6250	Achnanthes flexella	1,7	3
10	6253	Achnanthes helvetica	1,5	3
11	6152	Achnanthes holsatica	3,2	2
12	6047	Achnanthes hungarica	5,0	3
13	6256	Achnanthes kranzii	1,5	3
14	16119	Achnanthes kuelbsii	1,5	3
15	16121	Achnanthes lacus-vulcani	1,5	3
16	6262	Achnanthes lapidosa	2,0	2
17	6705	Achnanthes laterostrata	1,5	3
18	6263	Achnanthes lauenburgiana	4,5	3
19	6264	Achnanthes levanderi	1,5	3
	6265		1,5	3
20		Achnanthes marginulata		
21	6266	Achnanthes minuscula	4,0	2
22	6173	Achnanthes minutissima var. affinis	4,1	2
23	6240	Achnanthes minutissima var. gracillima	1,0	3
24	6267	Achnanthes minutissima var. scotica	1,8	3
25	6268	Achnanthes oblongella	1,5	3
26	6271	Achnanthes petersenii	2,0	2
27	6984	Achnanthes ploenensis	4,5	3
28	16140	Achnanthes pseudoswazi	1,5	3
29	6272	Achnanthes pusilla	1,5	3
30	6711	Achnanthes rechtensis	1,0	3
31	6273	Achnanthes rosenstockii	2,4	2
32	16143	Achnanthes rossii	1,5	3
33	6275	Achnanthes silvahercynia	1,5	3
34	6276	Achnanthes subatomoides	2,0	2
35	6279	Achnanthes trinodis	1,3	3
36	6713	Achnanthes ventralis	1,5	3
37	6280	Achnanthes ziegleri	3,8	2
38	6171	Amphora inariensis	2,5	1
39	6044	Amphora ovalis	4,0	2
40	6288	Amphora thumensis	2,3	1
41	6289	Amphora veneta var. capitata	2,2	2
42	6049	Anomoeoneis sphaerophora	5,0	3
43	6291	Brachysira brebissonii	1,5	3
44	6292	Brachysira calcicola	1,0	3
45	6293	Brachysira calcicola Brachysira hofmanniae	1,0	3
46	6294	Brachysira liliana	1,0	3
47	6294	Brachysira neoexilis		2
		,	1,9	
48	6296	Brachysira serians	1,0	3
49	6297	Brachysira styriaca	1,1	3
50	6298	Brachysira vitrea	1,5	3
51	6299	Brachysira zellensis	1,0	3
52	6300	Caloneis aerophila	1,5	3
53	6166	Caloneis alpestris	1,9	2
54	6043	Caloneis amphisbaena	4,5	3
55	6051	Caloneis bacillum	4,0	2
56	6301	Caloneis latiuscula	1,0	3
57	6302	Caloneis obtusa	1,0	3
58	6810	Caloneis tenuis	1,0	3
59	6306	Cocconeis neothumensis	3,7	2
60	6020	Cocconeis pediculus	4,4	3
61	6031	Cymatopleura solea	4,5	3
62	16997	Cymbella affinis 1	2,4	1
63	16998	Cymbella affinis 2	4,1	2
		1 2	1 1	1

lfd Nr	DVNr	Taxon	Trophiewert	Gewichtung
64	6310	Cymbella alpina	1,0	3
65	6311	Cymbella amphicephala	2,2	1
66	6312	Cymbella ancyli	2,7	1
67	6313	Cymbella austriaca	1,7	3
68	6183	Cymbella cesatii	1,5	3
69	6979	Cymbella cymbiformis	1,3	2
70	6315	Cymbella delicatula	1,5	3
71	6316	Cymbella descripta	1,0	3
72	6318	Cymbella falaisensis	2,0	2
73	6319	Cymbella gaeumannii	1,5	3
74	6320	Cymbella gracilis	1,5	3
75	6321 6323	Cymbella helystias var agreests	1,5 1,7	3 2
77 76	6184	Cymbella helvetica var. compacta Cymbella helvetica var. helvetica	4,0	2
78	6324	Cymbella hybrida	1,1	3
79	6325	Cymbella incerta	1,1	3
80	6327	Cymbella laevis	1,1	2
81	6328	Cymbella lapponica	2,0	3
82	6331	Cymbella mesiana	1,5	3
83	6909	Cymbella minuta	2,0	2
84	6747	Cymbella norvegica	1,5	3
85	6977	Cymbella perpusilla	1,5	3
86	6040	Cymbella prostrata	4,3	3
87	6334	Cymbella reichardtii	4,4	3
88	16199	Cymbella schimanskii	1,0	3
89	6336	Cymbella simonsenii	1,5	3
90	6338	Cymbella stauroneiformis	1,5	3
91	6150	Cymbella subaequalis	1,6	2
92	6066	Cymbella tumida	4,5	3
94	6339	Cymbella tumidula var. lancettula	1,5	3
93	6067	Cymbella tumidula var. tumidula	1,5	3
95	6340	Denticula kuetzingii	1,9	2
96	6068	Denticula tenuis	3,0	1
97	6185	Diatoma anceps	2,0	2
98	6167	Diatoma hyemalis	1,5	3
99	6949	Diatoma mesodon	2,0	2
100	16206	Diatoma moniliformis (elliptische bis ovale Sippen)	5,0	3
101	16207	Diatoma problematica	5,0	3
102	6006	Diatoma vulgaris	4,4	3
103	6807	Diploneis elliptica	2,2	1
104	6346	Diploneis oblongella	2,4	2
105	6070	Diploneis ovalis	1,0	3
106	6349	Diploneis petersenii	2,0	2
107	6354	Eunotia arcubus	1,5	2
108	6761	Eunotia botuliformis	1,5	3
109	6357	Eunotia diodon	1,5	3
110	6359	Eunotia fallax	1,0	3
111	6360	Eunotia flexuosa	1,5	3
112	6362	Eunotia glacialis	1,5	3
113	6364	Eunotia implicata	1,5	3
114 115	6214 6367	Eunotia incisa Eunotia meisteri	1,5 1,5	3
116	6370	Eunotia meisteri Eunotia muscicola var. tridentula	1,5	3
117	6370	Eunotia nymanniana	1,0	3
117	6168	Eunotia pectinalis	1,0	3
119	6851	Eunotia praerupta	1,5	3
120	6375	Eunotia rhomboidea	1,5	3
121	6376	Eunotia septentrionalis	1,0	3
122	6378	Eunotia silvahercynia	1,0	3
123	6382	Eunotia sudetica	1,0	3
124	6383	Eunotia tenella	1,5	3
125	16233	Fragilaria acidoclinata	1,5	3
126	6908	Fragilaria capucina var. amphicephala	4,5	3
127	6389	Fragilaria capucina var. austriaca	1,6	2
	•			

lfd Nr	DVNr	Taxon	Trophiewert	Gewichtung
128	6033	Fragilaria capucina var. capucina	2,5	1
129	6393	Fragilaria capucina var. mesolepta	4,0	2
130	6394	Fragilaria capucina var. perminuta	4,2	2
131	6186	Fragilaria capucina var. vaucheriae	5,0	3
132	6399	Fragilaria delicatissima	2,0	2
133	6401	Fragilaria exigua	1,5	3
134	6915	Fragilaria famelica	4,5	3
135	6234	Fragilaria fasciculata	5,0	3
136	6402	Fragilaria incognita	2,9	1
137	6405	Fragilaria nanana	2,1	2
138	6237	Fragilaria parasitica	4,0	2
139	6238	Fragilaria pulchella	5,0	3
140	6408	Fragilaria robusta	2,5	1
141	6409	Fragilaria tenera	2,5	1
142	6410	Fragilaria ulna angustissima - Sippen	5,0	3
143	6169	Fragilaria virescens	2,0	2
144	6187	Frustulia rhomboides	1,5	3
145	6079	Frustulia vulgaris	5,0	3
146 147	6417 6819	Gomphonema augustum	1,5 2,0	3 2
147	6081	Gomphonema angustum	5,0	3
149	6419	Gomphonema augur Gomphonema auritum	2,5	1
150	6420	Gomphonema bavaricum	1,5	3
151	6421	Gomphonema bohemicum	1,5	3
152	6423	Gomphonema dichotomum	2,0	2
153	6424	Gomphonema dichotomam Gomphonema hebridense	2,5	1
154	6425	Gomphonema helveticum	1,1	3
155	6426	Gomphonema lagerheimii	1,5	3
156	6427	Gomphonema lateripunctatum	1,8	2
157	6912	Gomphonema minutum	4,5	3
158	6429	Gomphonema occultum	1,8	2
160	6431	Gomphonema olivaceum var. olivaceoides	4,1	2
161	6432	Gomphonema olivaceum var. olivaceolacuum	2,5	1
159	6867	Gomphonema olivaceum var. olivaceum	4,5	3
162	16258	Gomphonema parvulum var. parvulius	1,5	3
163	6434	Gomphonema procerum	2,0	2
164	6435	Gomphonema productum	2,5	1
165	6436	Gomphonema pseudoaugur	5,0	3
166	6911	Gomphonema pseudotenellum	2,0	2
167	6437	Gomphonema pumilum	4,3	2
168	6440	Gomphonema subtile	2,5	1
169	6441	Gomphonema tenue	1,3	3
170	6897	Gomphonema tergestinum	4,0	2
171	6442	Gomphonema vibrio	1,7	2
172	6036	Gyrosigma acuminatum	4,5	3
173	6443	Gyrosigma nodiferum	5,0	3
174	6445	Mastogloia smithii var. lacustris	1,3	3
175	6026	Meridion circulare var circulare	4,0	1
176	6447	Navicula abiskoensis	1,5	3
177	6448	Navicula absoluta	2,5	1
178 179	6809 6087	Navicula angusta Navicula bacillum	1,5	3 2
180	6462	Navicula canoris	3,7 4,5	3
181	6868	Navicula canons Navicula capitata var. capitata	5,0	3
182	6910	Navicula capitata var. capitata Navicula capitatoradiata	4,8	3
183	6088	Navicula capitatoradiata Navicula cari	4,8	3
184	16300	Navicula catr Navicula cataractarheni	2,5	1
185	6089	Navicula catalactameni Navicula cincta	5,0	3
186	6968	Navicula citrus	5,0	3
187	6466	Navicula clementis	4,0	2
188	6969	Navicula cocconeiformis	2,0	2
189	6468	Navicula concentrica	1,8	3
190	6469	Navicula constans	4,0	2
191	6010	Navicula cryptocephala	4,9	3
	•			ē

lfd Nr	DVNr	Taxon	Trophiewert	Gewichtung
192	6471	Navicula cryptofallax	4,5	3
193	6038	Navicula cuspidata	5,0	3
194	6472	Navicula dealpina	1,5	3
195	6473	Navicula decussis	3,9	2
196	6474	Navicula densilineolata	1,9	3
197	6475	Navicula detenta	1,5	3
198	6478	Navicula diluviana	2,3	1
199	6826	Navicula elginensis	4,0	2
200	6481	Navicula erifuga	5,0	3
201	6917	Navicula exilis	2,0	2
202	6485	Navicula festiva	1,5	3
203	6967	Navicula gastrum	4,5	3
204	6493	Navicula gottlandica	1,9	2
205	6015	Navicula gregaria	5,0	3
206	6833	Navicula halophila	5,0	3
207	6496	Navicula heimansioides	1,5	3
208	6500	Navicula hustedtii	4,5	3
209	6812	Navicula integra	4,5	3
210	6505	Navicula jaagii	1,0	3
211	6506 6507	Navicula jaernefeltii	2,5	2
		Navicula joubaudii Navicula laevissima	4,0	
213 214	6882 6864	Navicula laevissima Navicula lanceolata	2,5 5,0	3
	+		· ·	2
215 216	16335 6923	Navicula leistikowii Navicula lenzii	2,0 2,3	1
217	16011	Navicula leptostriata	1,5	3
218	6510	Navicula libonensis	5,0	3
219	6513	Navicula indirerisis Navicula mediocris	1,5	3
220	6514	Navicula mediociis Navicula menisculus var. grunowii	4,0	2
221	6872	Navicula minuscula var. muralis	5,0	3
222	6861	Navicula monoculata	5,0	3
223	6520	Navicula naumannii	1,0	3
224	16349	Navicula notha	2,0	2
225	6521	Navicula oligotraphenta	2,0	2
226	6522	Navicula oppugnata	4,0	2
227	6099	Navicula placentula	4,0	2
228	16356	Navicula porifera var. opportuna	1,5	3
229	6524	Navicula praeterita	2,2	2
230	6100	Navicula protracta	4,5	3
231	6525	Navicula pseudanglica	4,1	2
232	6527	Navicula pseudobryophila	1,5	3
233	6865	Navicula pseudolanceolata	4,0	2
234	6529	Navicula pseudoscutiformis	1,5	3
235	6530	Navicula pseudotuscula	2,5	1
236	6102	Navicula pygmaea	4,5	3
237	6534	Navicula recens	5,0	3
239	6535	Navicula reichardtiana var. crassa	4,3	2
238	6221	Navicula reichardtiana var. reichardtiana	4,3	2
240	6104	Navicula reinhardtii	4,0	2
241	16362	Navicula rhynchotella	5,0	3
242	6538	Navicula schadei	2,0	2
243	6539	Navicula schmassmannii	1,5	3
244	6926	Navigula schoenfeldii	4,1	3
245	6540	Navicula schroeterii sensu lato	5,0	3
246 247	6541	Navicula scutelloides Navicula slesvicensis	4,5 4,3	3
	6873		· ·	3
248 249	6543 6813	Navicula splendicula	1,5 4,5	3
250	6546	Navicula splendicula Navicula stroemii	1,8	2
250	6547	Navicula subalpina	2,1	1
252	6548	Navicula sublucidula	4,5	3
253	6549	Navicula submolesta	1,5	3
254	6550	Navicula subriolesta Navicula subrotundata syn. utermoehlii	4,0	1
255	6878	Navicula subtilissima	1,5	3
200	00/0	Travicula subulissima	ر, ا	,

lfd Nr	DVNr	Taxon	Trophiewert	Gewichtung
256	6551	Navicula suchlandtii	1,5	3
257	6831	Navicula tripunctata	5,0	3
258	6870	Navicula trivialis	5,0	3
259	6989	Navicula tuscula	1,9	1
260	6555	Navicula tuscula f. minor	3,5	2
261	16037	Navicula variostriata	1,5	3
262	6558	Navicula viridula var. rostellata	5,0	3
263	6560	Navicula vulpina	2,0	2
264	6561	Navicula wildii	1,3	3
265	6820	Neidium affine	1,5	3
266	6563	Neidium alpinum	1,5	3
267	6564	Neidium ampliatum	2,0	2
268	6856	Neidium binodis	3,9	2
269	6566	Neidium bisulcatum	1,5	3
270	6109	Neidium iridis	1,5	3
271	6023	Nitzschia acicularis	5,0	3
272	6965	Nitzschia acula	5,0	3
273	6575	Nitzschia alpina	1,5	3
274	6039	Nitzschia amphibia	5,0	3
275	6576	Nitzschia angustatula	3,9	2
276	6577	Nitzschia bacilliformis	1,7	3
277	6578	Nitzschia bacillum	2,9	1
278	16048	Nitzschia calida	5,0	3
279	6193	Nitzschia clausii	5,0	3
280	6242	Nitzschia constricta	5,0	3
281	6584	Nitzschia dealpina	2,5	1
282	6921	Nitzschia debilis	5,0	3
283	6008	Nitzschia dissipata var. dissipata	4,7	3
284	6587	Nitzschia diversa	2,1	2
285	6588	Nitzschia draveillensis	5,0	3
286	6589	Nitzschia fibulafissa	2,0	2
287	6195	Nitzschia filiformis	5,0	3
288	6025	Nitzschia fonticola	4,5	3
289	6222	Nitzschia fossilis	4,5	
290	6196	Nitzschia frustulum	5,0	3
291 292	6592 6593	Nitzschia gessneri Nitzschia gisela	2,1	3
292	6963	Nitzschia giseia Nitzschia heufleriana	1,4 4,5	3
				_
294 295	6114 6595	Nitzschia hungarica Nitzschia inconspicua	5,0 5,0	3
296	6857	Nitzschia intermedia	5,0	3
297	6888	Nitzschia levidensis	5,0	3
298	16423	Nitzschia liebetruthii	5,0	3
299	16560	Nitzschia linearis - Sippen	5,0	3
300	6198	Nitzschia microcephala	5,0	3
301	6199	Nitzschia paleacea	5,0	3
302	6925	Nitzschia pusilla	5,0	3
303	6607	Nitzschia radicula	2,5	1
304	6608	Nitzschia regula	1,3	3
305	6027	Nitzschia sigmoidea	5,0	3
306	6610	Nitzschia sinuata var. delognei	4,1	2
307	6961	Nitzschia sociabilis	4,5	3
308	6612	Nitzschia solita	5,0	3
309	6613	Nitzschia subacicularis	4,2	3
310	6924	Nitzschia supralitorea	5,0	3
311	6119	Nitzschia tryblionella	5,0	3
312	16453	Nitzschia valdestriata	4,0	2
313	6616	Nitzschia wuellerstorffii	4,5	3
314	6619	Peronia fibula	1,5	3
315	6121	Pinnularia gibba var. gibba	4,5	3
316	6644	Pinnularia irrorata	1,5	3
318	6125	Pinnularia microstauron var. microstauron	1,5	3
317	6651	Pinnularia neomajor	2,0	2
319	6652	Pinnularia nodosa	1,5	3

lfd Nr	DVNr	Taxon	Trophiewert	Gewichtung
320	6126	Pinnularia subcapitata	1,5	3
321	6224	Rhoicosphenia abbreviata	4,5	3
322	6677	Rhopalodia gibba var. gibba	4,5	3
323	6678	Rhopalodia gibba var. parallela	1,7	3
324	6225	Simonsenia delognei	4,5	3
325	16081	Stauroneis borrichii	1,5	3
326	6681	Stauroneis kriegerii	4,0	2
327	6131	Stauroneis smithii	4,0	2
328	6689	Stauroneis undata	1,5	3
329	6690	Stenopterobia delicatissima	1,5	3
330	6693	Surirella brebissonii	5,0	3
331	6135	Surirella linearis	2,0	2
332	6229	Surirella minuta	5,0	3
333	6694	Surirella roba	2,0	2
334	6698	Tabellaria ventricosa	1,0	3

Trophie-Index nach SCHÖNFELDER et al. (unveroffentlicht) TI_{Nord}

Anhand der trophischen Kenngrößen (Tabelle 20) der an der zu bewertenden Litoralstelle registrierten Arten und deren prozentualen Häufigkeiten wird der Trophie-Index nach Schönfelder et al. (unveröffentlicht) berechnet (Gleichung 3). Voraussetzung für eine gesicherte Bewertung ist ein ausreichender Anteil indikativer Taxa. Der Index gilt nur dann als gesichert, wenn der Anteil der eingestuften Taxa mindestens 60% erreicht. Ist dies nicht der Fall, so kann lediglich eine ungesicherte Bewertung des Teilmoduls Diatomeen vorgenommen werden.

Gleichung 3: Trophie-Index nach Schönfelder et al. (unveroffentlicht) TI_{Nord}

$$TI_{Nord} = rac{\displaystyle\sum_{i=1}^{n} \sqrt{H_{i}}*T_{i}}{\displaystyle\sum_{i=1}^{n} \sqrt{H_{i}}}$$
 $TI_{Nord} = Trophie-Index Nord$
 $H_{i} = Prozentuale Häufigkeit der i-ten Art$
 $T_{i} = Trophiewert der i-ten Art$

Tabelle 20: Trophische Kenngrößen nach Schönfelder et al. (unveröffentlicht), modifiziert TI_{Nord}

lfd Nr	DVNr	Taxon	Trophiewert
1	6699	Achnanthes altaica	0,38
2	6180	Achnanthes clevei	2,25
3	16858	Achnanthes clevei var. rostrata	0,00
4	6855	Achnanthes conspicua	2,62
5	16111	Achnanthes daonensis	0,98
6	6701	Achnanthes daui	0,98
7	6248	Achnanthes delicatula	5,43
8	16114	Achnanthes didyma	0,48
9	6986	Achnanthes exigua	2,41
10	6249	Achnanthes exilis	0,00
11	6250	Achnanthes flexella	0,02
12	6251	Achnanthes flexella var. alpestris	0,54
13	6253	Achnanthes helvetica	0,48
14	6152	Achnanthes holsatica	1,70
15	6047	Achnanthes hungarica	6,67
16	6255	Achnanthes joursacense	1,96
17	6703	Achnanthes kolbei	4,12
18	6256	Achnanthes kranzii	0,48
19	16119	Achnanthes kuelbsii	0,48
20	16121	Achnanthes lacus-vulcani	0,48
21	6258	Achnanthes laevis	0,52
22	6260	Achnanthes lanceolata ssp. frequentissima	2,28
23	16127	Achnanthes lanceolata ssp. lanceolata	1,15

lfd Nr	DVNr	Taxon	Trophiewe					
24	6262	Achnanthes lapidosa	0,66					
25	6705	Achnanthes laterostrata	0,48					
26	6263	Achnanthes lauenburgiana Achnanthes levanderi	4,23					
27 28	6264 6265	Achnanthes marginulata	0,38 0,48					
26 29	6266	Achnanthes minuscula	3,04					
30	6173	Achnanthes minutissima var. affinis	3,38					
31	6240	Achnanthes minutissima var. gracillima	0,38					
32	6267	Achnanthes minutissima var. scotica	0,14					
33	6268	Achnanthes oblongella	0,48					
34	6269	Achnanthes oestrupii	1,55					
35	6271	Achnanthes petersenii	0,66					
36	6984	Achnanthes ploenensis	4,23					
37	16140	Achnanthes pseudoswazi	0,48					
38	6272	Achnanthes pusilla	0,75					
39	6711	Achnanthes rechtensis	0,38					
40	6273	Achnanthes rosenstockii	0,09					
41	16143	Achnanthes rossii	0,48					
42	6275	Achnanthes silvahercynia	0,48					
43	16662	Achnanthes straubiana	0,00					
44 45	6276	Achnanthes subatomoides Achnanthes trinodis	0,66					
45 46	6279 6713	Achnanthes trinodis Achnanthes ventralis	0,43					
46 47	6280	Achnanthes ziegleri	1,72					
48	6048	Amphipleura pellucida	1,72					
49 49	6283	Amphora fogediana	0,90					
50	6171	Amphora inariensis	0,98					
51	6860	Amphora libyca	3,96					
52	6044	Amphora ovalis	3,26					
53	6983	Amphora pediculus	2,89					
54	6288	Amphora thumensis	0,38					
55	6181	Amphora veneta	5,70					
56	6289	Amphora veneta var. capitata	0,77					
57	6049	Anomoeoneis sphaerophora	5,30					
58	6291	Brachysira brebissonii	0,48					
59	6292	Brachysira calcicola	0,38					
60	6293	Brachysira hofmanniae	0,38					
61	6294	Brachysira liliana	0,38					
62	6295	Brachysira neoexilis	0,74					
63	16167	Brachysira procera	0,38					
64	6296	Brachysira serians	0,38					
65 66	6297	Brachysira styriaca	0,40					
67	6298	Brachysira vitrea Brachysira zellensis	0,48 0,38					
68	6299 6300	Caloneis aerophila	0,38					
69	6166	Caloneis alpestris	0,48					
70	6043	Caloneis amphisbaena	4,05					
71	6051	Caloneis bacillum	3,21					
72	6301	Caloneis latiuscula	0,38					
73	6302	Caloneis obtusa	0,38					
74	6304	Caloneis schumanniana	1,86					
75	6052	Caloneis silicula	3,25					
76	6810	Caloneis tenuis	0,78					
77	6981	Cocconeis disculus	2,02					
78	6306	Cocconeis neothumensis	2,15					
79	6020	Cocconeis pediculus	4,33					
80	6021	Cocconeis placentula	3,45					
81	6728	Cocconeis placentula var. lineata	2,93					
82	6729	Cocconeis placentula var. pseudolineata	3,45					
83	6057	Cymatopleura elliptica	3,33					
84	6031	Cymatopleura solea	4,08					
85	6058	Cymbella affinis	1,09					
86	6310	Cymbella alpina	0,38					
87	6311	Cymbella amphicephala	1,41					
88	6739	Cymbella amphicephala var. hercynica	0,00					
89	6312	Cymbella angustata	1,14					
90 91	6741	Cymbella argustata	0,00					
91 92	6092	Cymbella austriaca	2,58					
92 93	6313	Cymbella austriaca Cymbella caespitosa	0,54					
77	6891	Cymbelia caespilosa	1,55					

lfd Nr	DVNr	Taxon	Trophiewert
95	6059	Cymbella cistula	2,56
96	6060	Cymbella cuspidata	0,77
97	6979	Cymbella cymbiformis	0,71
98 99	6315 6316	Cymbella descripta	0,48
100	6061	Cymbella descripta Cymbella ehrenbergii	0,38 2,36
101	6317	Cymbella elginensis	0,38
102	6318	Cymbella falaisensis	0,68
103	6319	Cymbella gaeumannii	0,48
104	6320	Cymbella gracilis	0,97
105	6321	Cymbella hebridica	0,48
106	6184	Cymbella helvetica	0,50
107	6323	Cymbella helvetica var. compacta	3,04
108	6978	Cymbella hustedtii	1,47
109	6324	Cymbella hybrida	0,40
110	6325	Cymbella incerta	0,40
111	6326 6327	Cymbella lacustris	0,04
113	6062	Cymbella laevis Cymbella lanceolata	0,62 3,60
114	6328	Cymbella lapponica	0,66
115	6329	Cymbella lata	1,51
116	6330	Cymbella leptoceros	0,95
117	6331	Cymbella mesiana	0,48
118	6895	Cymbella microcephala	1,02
119	6909	Cymbella minuta	0,70
120	6747	Cymbella norvegica	0,48
121	6977	Cymbella perpusilla	0,48
122	6040	Cymbella prostrata	3,39
123	6334	Cymbella reichardtii	3,97
124	16199	Cymbella schimanskii	0,38
125	6336	Cymbella simonsenii	0,48
126 127	6065	Cymbella sinuata	2,79
127	6338 6150	Cymbella stauroneiformis Cymbella subaequalis	0,48 0,83
129	6750	Cymbella subcuspidata	2,14
130	6066	Cymbella tumida	4,49
131	6067	Cymbella tumidula	0,48
132	6339	Cymbella tumidula var. lancettula	0,48
133	6340	Denticula kuetzingii	0,97
134	6068	Denticula tenuis	0,80
135	6185	Diatoma anceps	0,66
136	6208	Diatoma ehrenbergii	0,00
137	6167	Diatoma hyemalis	0,48
138	6949	Diatoma mesodon	0,66
139 140	16207	Diatoma problematica Diatoma tenuis	5,74 4,97
141	6210 6006	Diatoma vulgaris	5,61
142	6807	Diploneis elliptica	1,44
143	6345	Diploneis modica	0,02
144	6346	Diploneis oblongella	0,30
145	6070	Diploneis ovalis	0,44
146	6349	Diploneis petersenii	0,66
147		Diploneis subconstricta	0,00
148	6211	Ellerbeckia arenaria	3,17
149	6212	Epithemia adnata	2,42
150	6352	Epithemia smithii	0,00
151	6887	Epithemia sorex	2,46
152	6353	Epithemia turgida	2,95
153 154	6354	Eunotia arcubus Eunotia bilunaris	0,62
154	6213 6761	Eunotia bilunaris Eunotia botuliformis	3,66 1,61
156	6357	Eunotia diodon	0,48
157	6975	Eunotia exigua	0,48
158	6358	Eunotia faba	0,42
159	6359	Eunotia fallax	0,38
160	6360	Eunotia flexuosa	0,48
161	6361	Eunotia formica	5,86
162	6362	Eunotia glacialis	1,81
163	6363	Eunotia hexaglyphis	0,38
164	6364	Eunotia implicata	1,11
165	6214	Eunotia incisa	1,02

lfd Nr	DVNr	Taxon	Trophiewer						
166	6367	Eunotia meisteri	0,38						
167	6370	Eunotia muscicola var. tridentula	0,48						
168	6371	Eunotia naegelii	1,07						
169 170	6372 6168	Eunotia nymanniana Eunotia pectinalis	0,38 0,48						
171	6851	Eunotia praerupta	0,48						
172	6374	Eunotia praerupta var. bigibba	0,48						
173	6375	Eunotia rhomboidea	0,48						
174	6376	Eunotia septentrionalis	0,38						
175	6850	Eunotia serra	0,38						
176	6770	Eunotia serra var. diadema	0,38						
177	6377	Eunotia serra var. tetraodon	0,38						
178	6378	Eunotia silvahercynia	0,38						
179	6382	Eunotia sudetica	0,38						
180	6383	Eunotia tenella	0,48						
181 182	16233 6235	Fragilaria acidoclinata Fragilaria berolinensis	0,48 2,28						
183	6387	Fragilaria berolinensis	6,87						
184	6388	Fragilaria brevistriata	2,81						
185	6033	Fragilaria capucina	3,79						
186	16571	Fragilaria capucina distans - Sippen	0,38						
187	6908	Fragilaria capucina var. amphicephala	0,51						
188	6389	Fragilaria capucina var. austriaca	0,98						
189	6393	Fragilaria capucina var. mesolepta	3,82						
190	6396	Fragilaria capucina var. rumpens	4,12						
191	6186	Fragilaria capucina var. vaucheriae	5,33						
192	6398	Fragilaria cyclopum	2,04						
193	6399	Fragilaria delicatissima	0,90						
194	6401	Fragilaria exigua	0,48						
195	6915	Fragilaria famelica	4,23						
196	6234	Fragilaria fasciculata	5,66						
197	6402	Fragilaria incognita	1,34						
198 199	6403	Fragilaria lapponica	2,50						
200	6774 6829	Fragilaria leptostauron var. dubia Fragilaria leptostauron var. martyi	4,18 3,98						
201	6405	Fragilaria nanana	1,57						
202	6406	Fragilaria nitzschioides	5,66						
203	6237	Fragilaria parasitica	3,28						
204	6776	Fragilaria parasitica var. subconstricta	4,83						
205	6078	Fragilaria pinnata	2,57						
206	6238	Fragilaria pulchella	5,92						
207	6408	Fragilaria robusta	1,51						
208	6409	Fragilaria tenera	1,89						
209	6239	Fragilaria ulna	5,27						
210	6410	Fragilaria ulna angustissima - Sippen	5,74						
211	6233	Fragilaria ulna var. acus	3,78						
212	6169	Fragilaria virescens	0,66						
213	6187	Frustulia rhomboides	1,00						
214 215	6412	Frustulia rhomboides var. crassinervia	0,48						
216	6413 6079	Frustulia vulgaris	0,48						
217	6080	Frustulia vulgaris Gomphonema acuminatum	5,71 3,31						
217	6417	Gomphonema acutiusculum	0,48						
219	6819	Gomphonema angustum	0,48						
220	6081	Gomphonema augur	4,99						
221	6419	Gomphonema auritum	0,27						
222	6420	Gomphonema bavaricum	0,48						
223	6421	Gomphonema bohemicum	0,48						
224	6217	Gomphonema clavatum	4,00						
225	6423	Gomphonema dichotomum	0,61						
226	6883	Gomphonema gracile	1,35						
227	6424	Gomphonema hebridense	0,23						
228	6425	Gomphonema helveticum	0,40						
229	6792	Gomphonema insigne	5,37						
230	6426	Gomphonema lagerheimii	0,48						
231	6427	Gomphonema lateripunctatum	0,25						
232	6428	Gomphonema micropus	6,49						
233	6912	Gomphonema minutum	4,23						
234 235 236	6429 6867 6430	Gomphonema occultum Gomphonema olivaceum Gomphonema olivaceum var. minutissimum	0,57 4,30 0,98						

lfd Nr	DVNr	Taxon	Trophiewer					
237	6431	Gomphonema olivaceum var. olivaceoides	0,98					
238	6432	Gomphonema olivaceum var. olivaceolacuum	4,23					
239	6158	Gomphonema parvulum	2,95					
240	6433 16258	Gomphonema parvulum var. exilissimum Gomphonema parvulum var. parvulius	0,98 0,48					
242	6434	Gomphonema procerum	0,48					
243	6435	Gomphonema productum	0,98					
244	6911	Gomphonema pseudotenellum	0,66					
245	6437	Gomphonema pumilum	2,75					
246	6438	Gomphonema sarcophagus	7,76					
247	6440	Gomphonema subtile	0,13					
248	6441	Gomphonema tenue	0,43					
249	6897	Gomphonema tergestinum	3,04					
250	6188	Gomphonema truncatum	3,25					
251 252	6442	Gomphonema vibrio	0,77					
252	6041 6443	Gyrosigma attenuatum Gyrosigma nodiferum	3,62 4,40					
254	16279	Mastogloia baltica	0,00					
255	16281	Mastogloia elliptica	0,00					
256	6804	Mastogloia grevillei	0,00					
257	6444	Mastogloia smithii	0,37					
258	6445	Mastogloia smithii var. lacustris	0,43					
259	6005	Melosira varians	4,89					
260	6026	Meridion circulare	4,92					
261	6447	Navicula abiskoensis	0,48					
262	6448	Navicula absoluta	0,60					
263	6117	Navicula atomus	4,74					
264	6241	Navicula atomus var. permitis	5,74					
265 266	6087 6460	Navicula bacillum Navicula brockmannii	2,48 0,38					
267	6461	Navicula brockmannii Navicula bryophila	0,58					
268	6868	Navicula capitata	5,37					
269	6966	Navicula capitata var. hungarica	5,37					
270	6463	Navicula capitata var. lueneburgensis	4,59					
271	6910	Navicula capitatoradiata	4,20					
272	6088	Navicula cari	3,06					
273	16859	Navicula cariocincta	2,20					
274	6089	Navicula cincta	2,20					
275	6968	Navicula citrus	5,74					
276	6465	Navicula clementioides	2,00					
277	6466 6969	Navicula clementis	2,72					
278 279	6468	Navicula cocconeiformis Navicula concentrica	0,66 0,40					
280	6469	Navicula constans	3,04					
281	6470	Navicula costulata	5,86					
282	6010	Navicula cryptocephala	3,00					
283	6471	Navicula cryptofallax	4,23					
284	16307	Navicula cryptotenelloides	1,37					
285	6038	Navicula cuspidata	4,85					
286	6472	Navicula dealpina	0,48					
287	6473	Navicula decussis	3,02					
288	6474	Navicula densilineolata	0,62					
289	6475	Navicula detenta	0,48					
290	6478	Navigula alginonsis	0,23					
291 292	6826 6481	Navicula elginensis Navicula erifuga	2,50 5,74					
292	6917	Navicula erifuga Navicula exilis	0,66					
294	6484	Navicula explanata	0,60					
295	6485	Navicula festiva	0,48					
296	6489	Navicula gallica var. perpusilla	0,48					
297	6967	Navicula gastrum	3,57					
298	6916	Navicula goeppertiana	5,74					
299	6493	Navicula gotlandica	0,22					
300	6015	Navicula gregaria	6,76					
301	6833	Navicula halophila	5,75					
302	6496	Navicula heimansioides	0,48					
303	6497	Navicula helensis	0,70					
304 305	6500 6812	Navicula integra	4,23 4,23					
305	6505	Navicula integra Navicula jaagii	0,38					
307	6506	Navicula jaegii Navicula jaernefeltii	0,38					

lfd Nr	DVNr	Taxon	Trophiewer
308	16327	Navicula jentzschii	1,60
309	6507	Navicula joubaudii	3,04
310	6509	Navicula krasskei	0,38
311	6882	Navicula laevissima	2,32
312	6864	Navicula lanceolata	7,05
313	6156	Navicula laterostrata	1,09
314	16335	Navicula leistikowii	0,66
315	6923	Navicula lenzii	0,83
316	16011	Navicula leptostriata	0,48
317	6510	Navicula libonensis	5,74
318	6513	Navicula mediocris	0,48
319	6094	Navicula menisculus	4,67
320 321	6514 16343	Navicula menisculus var. grunowii	3,04
321	6872	Navicula menisculus var. upsaliensis Navicula minuscula var. muralis	4,00
322	6516	Navicula minusculoides Navicula minusculoides	5,74
323 324	6219	Navicula minusculoides Navicula molestiformis	5,74 5,74
325	6861	Navicula monoculata	5,74
326	6520	Navicula naumannii	0,38
327	16349	Navicula notha	0,58
328	6073	Navicula oblonga	2,02
328 329	6521	Navicula obioriga Navicula oligotraphenta	0,11
330	6522	Navicula oppugnata	4,62
331	6099	Navicula oppugnata Navicula placentula	2,64
332	6523	Navicula praceritula Navicula porifera	2,70
333	16356	Navicula porifera var. opportuna	0,48
334	6524	Navicula praeterita	0,41
335	6100	Navicula protracta	3,23
336	6525	Navicula pseudanglica	3,13
337	6527	Navicula pseudobryophila	0,48
338	6865	Navicula pseudolanceolata	3,24
339	6529	Navicula pseudoscutiformis	0,42
340	6530	Navicula pseudotuscula	1,12
341	6531	Navicula pseudoventralis	2,63
342	6101	Navicula pupula	3,01
343	6102	Navicula pygmaea	4,23
344	6103	Navicula radiosa	1,90
345	6534	Navicula recens	5,74
346	6221	Navicula reichardtiana	3,51
347	6104	Navicula reinhardtii	3,31
348	16362	Navicula rhynchotella	5,74
349	6536	Navicula rotunda	2,90
350	6537	Navicula saprophila	5,74
351	6538	Navicula schadei	0,66
352	6539	Navicula schmassmannii	0,48
353	6926	Navicula schoenfeldii	2,71
354	6540	Navicula schroeterii	5,74
355	6541	Navicula scutelloides	3,91
356	16368	Navicula seibigiana	2,83
357	6192	Navicula seminulum	5,70
358	6873	Navicula slesvicensis	4,65
359	6543	Navicula soehrensis	0,48
360	16034	Navicula soehrensis var. hassiaca	0,48
361	6544	Navicula soehrensis var. muscicola	0,48
362	6813	Navicula splendicula	4,23
363	6545	Navicula striolata	2,36
364	6546	Navicula stroemii	0,72
365	6547	Navicula subalpina	0,54
366	6106	Navicula subhamulata	1,17
367	6548	Navicula sublucidula	4,23
368	6896	Navicula subminuscula	5,74
369	6549	Navicula submolesta	0,48
370	16588	Navicula subplacentula	2,10
371	6550	Navicula subrotundata	2,43
372	6878	Navicula subtilissima	0,48
373	6551	Navicula suchlandtii	0,48
374	6554	Navicula tridentula	0,48
375	6831	Navicula tripunctata	5,31
376	6870	Navicula trivialis	4,92
377	16578	Navicula trophicatrix	2,62
378	6989	Navicula tuscula	1,17

lfd Nr	DVNr	Taxon	Trophiewer						
379	6555	Navicula tuscula f. minor	1,36						
380	16037	Navicula variostriata	0,48						
381	6558	Navicula viridula var. rostellata	5,74						
382 383	16860 6559	Navicula viridulacalcis Navicula vitabunda	0,50						
384	6560	Navicula vilaburida Navicula vulpina	1,09 0,71						
385	6561	Navicula vulpina Navicula wildii	0,43						
386	6820	Neidium affine	0,48						
387	6563	Neidium alpinum	0,48						
388	6564	Neidium ampliatum	0,92						
389	6566	Neidium bisulcatum	0,48						
390	6108	Neidium dubium	2,20						
391	6109	Neidium iridis	0,48						
392	6023	Nitzschia acicularis	5,83						
393	6573	Nitzschia acidoclinata	2,85						
394	6965	Nitzschia acula	5,74						
395	16390	Nitzschia agnita	5,56						
396 397	6575 6039	Nitzschia alpina Nitzschia amphibia	0,48 4,99						
398	16869	Nitzschia amphibia var. frauenfeldii	1,27						
399	6991	Nitzschia angustata	1,76						
400	6576	Nitzschia angustatula	2,84						
401	6577	Nitzschia bacilliformis	0,54						
402	6578	Nitzschia bacillum	1,34						
403	16048	Nitzschia calida	5,74						
404	6964	Nitzschia capitellata	7,29						
405	6194	Nitzschia communis	5,74						
406	6581	Nitzschia commutata	9,72						
407	6242	Nitzschia constricta	6,72						
408	6584	Nitzschia dealpina	0,98						
409	6921	Nitzschia debilis	5,74						
410	6008	Nitzschia dissipata	3,92						
411	16579	Nitzschia dissipata ssp. oligotraphenta	1,07						
412 413	6586 6587	Nitzschia dissipata var. media Nitzschia diversa	2,91						
414	6589	Nitzschia diversa Nitzschia fibulafissa	0,71 0,66						
415	6195	Nitzschia filiformis	5,74						
416	6025	Nitzschia fonticola	3,72						
417	6222	Nitzschia fossilis	3,65						
418	6592	Nitzschia gessneri	0,62						
419	6593	Nitzschia gisela	0,45						
420	6963	Nitzschia heufleriana	2,78						
421	16051	Nitzschia homburgiensis	0,98						
422	6114	Nitzschia hungarica	5,74						
423	6595	Nitzschia inconspicua	5,74						
424	6857	Nitzschia intermedia	5,74						
425	6597	Nitzschia lacuum	1,27						
426	16102	Nitzschia levidensis var. salinarum	8,08						
427 428	6024	Nitzschia linearis	4,77						
428	6599 6600	Nitzschia linearis var. subtilis Nitzschia linearis var. tenuis	5,74 5,74						
430	6198	Nitzschia microcephala	5,74						
430	6011	Nitzschia palea	3,05						
432	6199	Nitzschia paleacea	3,50						
433	6925	Nitzschia paicacca Nitzschia pusilla	5,74						
434	6607	Nitzschia radicula	0,98						
435	6608	Nitzschia regula	0,43						
436	6027	Nitzschia sigmoidea	3,40						
437	6961	Nitzschia sociabilis	4,23						
438	6612	Nitzschia solita	5,74						
439	6613	Nitzschia subacicularis	3,49						
440	6924	Nitzschia supralitorea	5,74						
441	6119	Nitzschia tryblionella	5,74						
442	6118	Nitzschia umbonata	5,74						
443	16452	Nitzschia valdecostata	6,34						
444	16453	Nitzschia valdestriata	3,04						
445	6616	Nitzschia wuellerstorffii	5,74						
446 447	6619	Peronia fibula	0,48						
447	6621 6623	Pinnularia anglica Pinnularia appendiculata	0,87 5,88						
440	0023	Pinnularia appendiculata Pinnularia borealis	2,95						

lfd Nr	DVNr	Taxon	Trophiewert
450	6958	Pinnularia legumen	1,76
451	6124	Pinnularia mesolepta	2,02
452	6125	Pinnularia microstauron	2,41
453	6651	Pinnularia neomajor	0,48
454	6111	Pinnularia nobilis	4,06
455	6652	Pinnularia nodosa	1,72
456	6842	Pinnularia polyonca	1,23
457	6659	Pinnularia rupestris	2,91
458	16074	Pinnularia silvatica	0,48
459	6126	Pinnularia subcapitata	0,94
460	6665	Pinnularia subcapitata var. hilseana	0,48
461	6667	Pinnularia subgibba	2,16
462	6670	Pinnularia subrupestris	4,18
463	6674	Pinnularia viridiformis	2,91
464	6224	Rhoicosphenia abbreviata	4,35
465	6677	Rhopalodia gibba	2,81
466	6678	Rhopalodia gibba var. parallela	0,54
467	6225	Simonsenia delognei	4,23
468	6129	Stauroneis anceps	1,72
469	16081	Stauroneis borrichii	0,48
470	6681	Stauroneis kriegerii	3,84
471	6130	Stauroneis phoenicenteron	1,27
472	16866	Stauroneis siberica	0,00
473	6131	Stauroneis smithii	3,04
474	6689	Stauroneis undata	0,48
475	16087	Stenopterobia curvula	0,48
476	6690	Stenopterobia delicatissima	0,48
477	16503	Stenopterobia densestriata	0,48
478	6133	Surirella angusta	7,05
479	6691	Surirella bifrons	2,42
480	6693	Surirella brebissonii	6,83
481	6135	Surirella linearis	1,69
482	16657	Surirella linearis var. constricta	0,48
483	6229	Surirella minuta	5,74
484	6694	Surirella roba	0,66
485	6091	Tabellaria flocculosa	1,13
486	6698	Tabellaria ventricosa	0,38

6.5.2.3 Modul "Referenzartenquotient" (RAQ)

Anhand ihres typspezifischen Vorkommens bei unterschiedlichen ökologischen Zuständen werden zwei Artengruppen unterschieden (Tabelle 21):

A typspezifische Referenzarten

C typspezifische Degradationszeiger

Tabelle 21: Artengruppen A und C in den biozönotischen Seetypen der Alpen, Voralpen, des Mittelgebirges und des Norddeutschen Tieflandes

lfd. Nr.	DV-Nr	Taxon	DS 1.1	DS 1.2	DS 5	9 S Q	DS 7	DS 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
1	6699	Achnanthes altaica			Α			Α													
2	16105	Achnanthes bahusiensis						С													
3	6139	Achnanthes biasolettiana																		Α	
4	6835	Achnanthes bioretii			С		С			Α	Α	С	С	C	Α		Α	С	С	C	C
5	6246	Achnanthes calcar						Α													
6	16664	Achnanthes caledonica	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
7	16108	Achnanthes carissima						Α													

lfd. Nr.	DV-Nr	Тахоп	DS 1.1	DS 1.2	DS 5	9 SQ	DS 7	DS 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
8		Achnanthes catenata	С	С				С													С
9	6700	Achnanthes chlidanos	_	_	Α			Α	_												\vdash
10	6180	Achnanthes clevei Achnanthes daonensis	С	С	С	Α	С	C A	С			Α	Α								
11 12	16111 6701	Achnanthes daui						A													Α
13		Achnanthes delicatula	С	С	С	С	С	С	С			С	С	С		С		С	С	С	C
14		Achnanthes delicatula ssp. engelbrechtii	С	С	С	С	С	С	С		С	С	С	С	С	С		С	С	С	C
15	16114	Achnanthes didyma						Α													
16	16116	Achnanthes distincta						Α													
17	6986	Achnanthes exigua	С	С	С			С	С								Α	C	С	С	Α
18	6249	Achnanthes exilis	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
19	6250	Achnanthes flexella	A	A	Α	Α	A	A	A	Α	Α	Α	Α	A	A	Α	A	A	A	Α	Α
20 21		Achnanthes flexella var. alpestris	Α	Α	A C	A C	A C	Α	A C	Α	A C	A C	A C	A C	A C	A C	A	A C	A C	A C	С
22	16585 6253	Achnanthes grana Achnanthes helvetica			A	C	C	Α	C			C	C	C	C	C	А	C	C	C	
23	6152	Achnanthes holsatica	С	С		С		С													
24		Achnanthes hungarica	C	C	С	C	С	C	С		С	С	С	С	С	С	С	С	С	С	С
25	16118	Achnanthes impexiformis						Α													
26	6255	Achnanthes joursacense						Α											Α		
27	6703	Achnanthes kolbei	С	С	С		С					С	С	C		С		С	С	С	С
28	6256	Achnanthes kranzii						Α													
29		Achnanthes kryophila						A													
30		Achnanthes kuelbsii						A													
31 32		Achnanthes lacus-vulcani Achnanthes laevis			Α	Α	Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
33		Achnanthes laevis var. austriaca			Α	Α	Α	^	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
34		Achnanthes laevis var. diluviana			Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
35 36		Achnanthes laevis var. quadratarea Achnanthes lanceolata ssp. frequentissima			A C	Α	A C		Α	Α	Α	A C	A C	Α	Α	Α	Α	A C	Α	Α	А
37	6261	Achnanthes lanceolata ssp. rostrata			C		С		Α			C	C					С			
38	6262	Achnanthes lapidosa						Α	,									C			
39	6705	Achnanthes laterostrata			Α			Α												Α	
40	6263	Achnanthes lauenburgiana	С	С	С	С	С	С	С			С	С	С		С		С		С	С
41	6264	Achnanthes levanderi						Α													
42	6706	Achnanthes lutheri						Α													
43		Achnanthes marginulata	-					Α													
44	16529	Achnanthes microscopica	С	С			С	A C		_			_		^		^	С		С	
45 46	6266 6014	Achnanthes minuscula Achnanthes minutissima	C	C	Α	Α	Α	C	Α	A	Α	Α	C A	Α	A	Α	A	A	Α	A	C A
47	6173	Achnanthes minutissima var. affinis	С	С				С	^					^	^			^	^	^	
48		Achnanthes minutissima var. gracillima	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
49		Achnanthes minutissima var. saprophila												С	С	С	С	С	С	С	С
50	6267	Achnanthes minutissima var. scotica	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
51		Achnanthes nodosa						Α													
52		Achnanthes oblongella						Α													
53		Achnanthes oestrupii																		Α	
54 55		Achnanthes peragalli	^	^	_	_	_	Α	^	_	_	_	_	^	^	_	^	^	^	^	_
56		Achnanthes petersenii Achnanthes ploenensis	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C
57		Achnanthes pseudoswazi						A										C			
58		Achnanthes pusilla	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
59	6711	Achnanthes rechtensis	Ĺ					Α													
60		Achnanthes rosenstockii	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
61		Achnanthes rossii						Α													
62		Achnanthes silvahercynia						Α													Ш
63		Achnanthes straubiana			Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
64	6276	Achnanthes subatomoides			Α			Α													$\vdash \vdash$
65 66		Achnanthes subexigua						A													$\vdash \vdash$
66 67		Achnanthes suchlandtii Achnanthes trinodis	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	\vdash
68	6713	Achnanthes unitodis Achnanthes ventralis	^	/1	A	/1	/3	Α	/1	/1	/1	/1	/1	/1	/1	/1	/1	/1	/1	/1	\vdash
<u> </u>	•	* ** *			<u> </u>											ь					

								sauer				>1,5)	<1,5)								
lfd. Nr.	DV-Nr	Taxon	DS 1.1	DS 1.2	DS 5	9 SQ	DS 7	s SO '6 SO	ALT nat	ALT/ BS pRh	ALT/ BS gRh	BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
								DS 8,	,	AL	AL	ALT/	ALT/ BS	_				_	δQ		
69	6280	Achnanthes ziegleri	С	С	A	Α	_	С	A	Α	A	Α	A	A	A	Α	Α		A	A	Α
70 71	6048 6283	Amphipleura pellucida Amphora fogediana			Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
72	16582	Amphora hemicycla			С	С	С		С			С	С	С		С		С	С	С	C
73	6171	Amphora inariensis						Α											Α	Α	Α
74	6860	Amphora libyca			С		С						С	С				С	С	С	
75	6287	Amphora normannii																			Α
76	6044	Amphora ovalis	C	C	C	C	C	С	C	C	C	C	C	C	C	C	C	C	C	C	C
77 78	6288 6181	Amphora thumensis Amphora veneta	A C	A C	A C	A C	A C		A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C
76 79	6289	Amphora veneta Amphora veneta var. capitata	Α	A	Α	Α	A		A	Α	A	A	Α	A	Α	Α	A	Α	A	A	Α
80	6530	Aneumastus stroesei	,,	,,	,,	,,	,,			,	,,	,,	,,	,,	,,	,,	,,	/\	,,	Α	
81	6049	Anomoeoneis sphaerophora	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
82	6172	Asterionella ralfsii						Α													
83	6291	Brachysira brebissonii	_			_	_	Α		_	_	_	_	_	_			_			
84	6292	Brachysira calcicola	Α	Α	Α	Α	Α	_	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
85 86	16165 16166	Brachysira follis Brachysira garrensis						A A													1
87	6293	Brachysira hofmanniae	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	\vdash
88	6294	Brachysira liliana	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
89	6295	Brachysira neoexilis	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
90	16167	Brachysira procera	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
91	6296	Brachysira serians						Α													
92	6297	Brachysira styriaca	Α	Α	A	Α	Α	Α	A	A	Α	A	Α	A	Α	Α	Α	A	A	A	
93 94	6298 16168	Brachysira vitrea Brachysira wygaschii	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α
95	6299	Brachysira zellensis	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
96	6300	Caloneis aerophila						Α													
97	6166	Caloneis alpestris	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
98	6043	Caloneis amphisbaena	С	С	С	С	С	С	С			С	С	С	С	С	С	С	С	С	С
99	6051	Caloneis bacillum	C	C			C	C	C					C				C	C	C	C
100 101	6301 6721	Caloneis latiuscula Caloneis lauta	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	6174	Caloneis leptosoma						A													
_	6302	Caloneis obtusa	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
104	6304	Caloneis schumanniana	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	6810	Caloneis tenuis	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	6175	Caloneis undulata						Α													—
107	6981 6306	Cocconeis disculus Cocconeis neothumensis	С	_		Α		С				Α	_								Α
108 109	6020	Cocconeis neotriumensis Cocconeis pediculus	С	C	С	А	С	С	Α			А	Α								_
	6729	Cocconeis placentula var. pseudolineata	_	Ŭ	Ŭ									С		С		С		С	С
	6307	Cocconeis pseudothumensis																		Α	Α
112	16181	Cocconeis scutellum var. parva																			Α
	6057	Cymatopleura elliptica																			С
	6031	Cymatopleura solea	С	С		-	_	С	_	_			_								С
	6058 16998	Cymbella affinis Cymbella affinis 2			Α	Α	Α	С	Α	Α	Α	Α	Α								H
	6310	Cymbella alpina	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
118	6311	Cymbella amphicephala	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	6739	Cymbella amphicephala var. hercynica	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
120	6740	Cymbella amphioxys						Α													Α
	6741	Cymbella angustata	<u> </u>	_		<u> </u>	<u> </u>	Α		<u> </u>	_		<u> </u>	ļ_	<u> </u>	_	ļ_	ļ <u>.</u>			С
-	6313	Cymbella austriaca	Α	A	A	Α	Α		A	Α	A	A	Α	A	Α	A	Α	Α	A	A	\vdash
123 124	16195 6314	Cymbella austriaca var. erdobenyiana Cymbella brehmii	A	A	A	A	A	Α	A	A	A	A	A	A A	A	A	A	A	A	A	Α
-	6891	Cymbella caespitosa	, ·		С	,,	С	<u> </u>		,,		Α	Α	,,	, ·		,,	,,	,,	Α	Α
	6183	Cymbella cesatii	Α	Α	A	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	6059	Cymbella cistula							С	Α	Α	Α	Α		Α		Α				
	16665	Cymbella compacta	С	С				С						С	С	С	С				C
129	6060	Cymbella cuspidata	l			<u> </u>	l	l		l			l		l						Α

lfd. Nr.	DV-Nr	Тахоп	DS 1.1	DS 1.2	DS 5	9 SQ	2 SQ	DS 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
130	6979	Cymbella cymbiformis	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
131	6315	Cymbella delicatula	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
-		Cymbella descripta	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
133 134	26134	Cymbella elginensis Cymbella excisa var. excisa						Α													Α
135	6318	Cymbella falaisensis	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
136	6319	Cymbella gaeumannii	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
137		Cymbella gracilis						Α													
138	6321	Cymbella hebridica						Α													<u> </u>
139 140	6184 6323	Cymbella helvetica Cymbella helvetica var. compacta	A C	A C	Α	Α	Α	С	Α	Α	Α	Α	Α	A C	A C	A C	A C	A C	A C	A C	Α
141	6978	Cymbella hustedtii	A	Α	Α	Α	Α	_	Α	Α	Α	Α	Α	A	A	A	Α	Α	A	A	Α
142	6324	Cymbella hybrida	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
143	16581	Cymbella hybrida var. lanceolata	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
144	6325	Cymbella incerta	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
145		Cymbella lacustris			Α							Α		Α	Α	Α	Α	Α	Α	Α	Α
146 147	6327	Cymbella langa hartalatii	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
147	26199 6328	Cymbella lange.bertalotii Cymbella lapponica	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А
149	6329	Cymbella lata	,,	,,	,,	,,	,,	,,	,,	,,	,,	,,	,,	Α	Α	Α	Α	Α	Α	Α	Α
150	6331	Cymbella mesiana						Α													
151	6895	Cymbella microcephala			Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
152	6909	Cymbella minuta	Α	Α				Α		Α	Α										Α
153	16196	Cymbella naviculacea						Α													
154 155	6747 6332	Cymbella norvegica Cymbella obscura						A													
156	16197	Cymbella paucistriata						Α													
157		Cymbella parva																			Α
158	6977	Cymbella perpusilla			Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
159		Cymbella prostrata	С	С			С	С										С		С	
160		Cymbella proxima	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
161 162	6334 6749	Cymbella reichardtii Cymbella reinhardtii	С	С			С	C A						С		С		С	С	С	С
		Cymbella rupicola						Α													
164	16199	Cymbella schimanskii	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
165	6336	Cymbella simonsenii	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
_	6065	Cymbella sinuata							Α			Α	Α								
_	6338	Cymbella stauroneiformis		_	_	^		Α		_	_	_	_	^		_	_	_	^	^	_
168 169	6150 6750	Cymbella subaequalis Cymbella subcuspidata	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
170		Cymbella subhelvetica																			Α
171		Cymbella subleptoceros																		Α	
172		Cymbella tumida	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
173		Cymbella tumidula	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
174 175		Cymbella tumidula var. lancettula Cymbella vulgata	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
_		Cymbella vulgata Cymbellonitzschia diluviana																			C
		Cymbopleura anglica																		Α	
178		Delphineis minutissima																			С
179		Delphineis surirella																			С
		Denticula kuetzingii	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
		Denticula tenuis	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	A	A	Α	Α	Α	A	A	
		Diatoma ehrenbergii Diatoma hyemalis						Α						Α	Α	Α	Α		Α	Α	Α
184		Diatoma myemans Diatoma mesodon	Α	Α				A													
185		Diatoma moniliformis	Ė	Ė				Ė													Α
186		Diatoma moniliformis ssp. ovalis	С	С			С	С					С					С	С	С	
187		Diatoma problematica	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	igsqcup
		Diatoma tenuis	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	С
_		Diatoma vulgaris Diatomella balfouriana	С	С	С	С	С	C A	С	С	С	С	С	С	С	С	С	С	С	С	С
100	10200	Diatornella banounana		1	ı			۱,٦		ı	ı	ı	ı			ı	ı	ı			

													_								
lfd. Nr.	DV-Nr	Тахоп	DS 1.1	DS 1.2	DS 5	9 SQ	2 SQ	DS 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
191	6341	Diploneis alpina						A				1	1							A	Α
	16210	Diploneis didyma																			С
193	6807	Diploneis elliptica	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
194	6343	Diploneis mauleri																		Α	Α
195	6346	Diploneis oblongella	Α	Α			Α													^	Α
-	6347 6070	Diploneis oculata Diploneis ovalis	Α	Α																Α	Α
198	6349	Diploneis petersenii	,,	,,			Α	Α													Α
199	26299	Encyonema hophense																		Α	
	6754	Entomoneis ornata						Α													
201	6757	Epithemia frickei		_	_	^	^		^	_	_	_	^	^		_	_	_	^	A	A
202 203	6351 6352	Epithemia goeppertiana Epithemia smithii	A	A	A	A	A A		A	A	A	A	A	A A	A A	A	A	A	A A	A A	A
204	16694	Epithemia westermannii	/,	,,	,,	,,	,,		/,	,,	,,	,,	,,	,,	,,	,,	,,	,,	,,	Α	
205	6998	Eunotia						Α													
206		Eunotia angusta						Α													
207	6354	Eunotia arcubus	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	16221 6886	Eunotia arculus Eunotia arcus						A													
210	6760	Eunotia arcus var. bidens	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α								
	6213	Eunotia bilunaris						Α													
212	16222	Eunotia bilunaris var. linearis						Α													
213	6355	Eunotia bilunaris var. mucophila						Α													
214	6761	Eunotia botuliformis						A													
215 216	16223 6356	Eunotia circumborealis Eunotia denticulata						A													
217	16667	Eunotia diadema						Α													
218	6357	Eunotia diodon						Α													
	16224	Eunotia elegans						Α													
	6975	Eunotia exigua						Α													
221 222	16225 6358	Eunotia exigua var. undulata Eunotia faba						A													
	6359	Eunotia fallax						A													
		Eunotia fallax var. groenlandica						Α													
	6360	Eunotia flexuosa						Α													
	6361	Eunotia formica						Α													
		Eunotia glacialis	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	6363 6364	Eunotia hexaglyphis Eunotia implicata						A A													
		Eunotia incisa						Α													
	6365	Eunotia intermedia						Α													
		Eunotia islandica						Α													
		Eunotia jemtlandica						Α													
	6366 6072	Eunotia lapponica Eunotia lunaris						A													
		Eunotia major						Α													
	6367	Eunotia meisteri						Α													
	6368	Eunotia microcephala						Α													
	6369	Eunotia minor																		Α	
	6885	Eunotia monodon						A													
	6763 6764	Eunotia monodon var. bidens Eunotia muscicola var. perminuta						A A													\vdash
	6370	Eunotia muscicola var. tridentula						Α													
244	6371	Eunotia naegelii						Α													
		Eunotia neofallax						Α													
		Eunotia nymanniana						A													
	6373 6884	Eunotia paludosa Eunotia paludosa var. trinacria						A													
	6765	Eunotia parallela						A													
		Eunotia parallela var. angusta						Α													
	6168	Eunotia pectinalis						Α													

lfd. Nr.	DV-Nr	Тахоп	DS 1.1	DS 1.2	DS 5	9 SQ	2 SQ	S 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
								DS				Ι¥	Ι¥								
252 253		Eunotia pectinalis var. undulata	^	^	۸	^	^	Α	^	_	^	^	^	^	^	^	^	^	^	^	_
		Eunotia praerupta Eunotia praerupta var. bidens	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
255		Eunotia praerupta var. bigibba						Α													
256	6768	Eunotia praerupta var. curta						Α													
257		Eunotia praerupta var. inflata						Α													
258 259		Eunotia pseudopectinalis Eunotia rhomboidea						Α													
260		Eunotia rhynchocephala						A													
261		Eunotia rhynchocephala var. satelles						Α													
262	16232	Eunotia ruzickae						Α													
263	6376	Eunotia septentrionalis						Α													
264		Eunotia serra						Α													
265 266		Eunotia serra var. diadema Eunotia serra var. tetraodon						A													
267		Eunotia silvahercynia						Α													
268	6379	Eunotia soleirolii						Α													
269	6380	Eunotia steineckei						Α													
270	6381	Eunotia subarcuatoides						Α													
271	6382 6383	Eunotia sudetica						A													
272 273		Eunotia tenella Eunotia tetraodon						A													
274	6771	Eunotia triodon						Α													
275	6827	Eunotia veneris						Α													
276		Fragilaria acidoclinata						Α													
277		Fragilaria berolinensis																			С
278 279		Fragilaria bicapitata Fragilaria bidens																			C
280		Fragilaria capucina	С	С			С	С	С									С	С		
281		Fragilaria capucina distans - Sippen				Α				Α	Α	Α	Α			Α	Α			Α	
282	6908	Fragilaria capucina var. amphicephala	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
283		Fragilaria capucina var. austriaca	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
284 285		Fragilaria capucina var. gracilis	С	С	A C	Α	С	С		Α	Α	Α	Α	С	С	С	С	С	A C	С	С
		Fragilaria capucina var. mesolepta Fragilaria capucina var. perminuta	С	С	С	Α	С	С		А	А	А	C		C	C	Α	С	C	С	С
287	6186	Fragilaria capucina var. vaucheriae	С	С	С	С	С	С	С				С	С	С	С	С	С	С	С	С
288	16234	Fragilaria constricta						Α													
289		Fragilaria delicatissima	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
290		Fragilaria exigua			Α			Α													
291 292		Fragilaria famelica Fragilaria fasciculata	С	С	С	С	С	C C	С			С	С	С	С	С	С	С	С	С	С
293		Fragilaria Iapponica			C							C			A	Α	Α				
294		Fragilaria leptostauron var. dubia												С				С		С	С
295		Fragilaria nanana			Α			Α													
296		Fragilaria nitzschioides																			С
297		Fragilaria parasitica			С	С		C						С	-	_	_	С	-	С	
		Fragilaria pulchella Fragilaria robusta	Α	Α	A	A	Α	C	Α	Α	Α	Α	Α	A	C A	C A	C A	Α	C A	A	C A
300		Fragilaria tenera	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
301		Fragilaria ulna			С	С	С		С												
302		Fragilaria virescens						Α													
303		Frustulia vulgaris						<u> </u>						С	С	С	С	С	С	С	С
304 305		Frustulia rhomboides						A													
305		Frustulia rhomboides var. crassinervia Frustulia rhomboides var. saxonica						A													
307		Frustulia rhomboides var. viridula						Α													
308	6079	Frustulia vulgaris	С	С				С													
309	6417	Gomphonema acutiusculum						Α													Ш
310		Gomphoneis transsylvanica												C	C	C	C	C		C	\sqcup
311	6080 16346	Gomphonema accuminatum						_						Α	Α	Α	Α	Α	Α	Α	Α
312	16246	Gomphonema amoenum		<u> </u>				Α		l	l	<u> </u>		l			l	l			ш

																			_		
lfd. Nr.	DV-Nr	Taxon	DS 1.1	DS 1.2	DS 5	9 SQ	2 SQ	DS 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
		Gomphonema angustum	Α	Α	Α	Α	Α	_	A	Α	Α	Α	Α	A	Α	Α	Α	A	Α	Α	Α
314		Gomphonema augur	^	_	_	^	^	C	A	_	_	_		C	C	C	C	C	C	C	C
315 316		Gomphonema auritum Gomphonema bavaricum	A A	A	A	A	A	Α	A A	A	A	A	A	A A	A	A A	A	A	A A	A	A
317		Gomphonema bohemicum	А	А	A	А	А	Α	А	А	А	А	A	A	А	А	A	A	А	A	A
318		Gomphonema coronatum						/\													Α
319		Gomphonema dichotomum	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
320		Gomphonema gracile								Α											Α
321	16594	Gomphonema grovei var. lingulatum																			С
322		Gomphonema hebridense	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
323		Gomphonema helveticum	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
324 325		Gomphonema insigne Gomphonema lagerheimii						Α												\vdash	С
326		Gomphonema lateripunctatum	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
327		Gomphonema micropus	^							^					^	^					C
328		Gomphonema minutum	С	С	С	С	С	С	С			С	С	С		С		С	С	С	С
329		Gomphonema occultum	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
330		Gomphonema olivaceum	С	С		С	С	С	С				С	С	С	С	С	С	С	С	С
331	6430	Gomphonema olivaceum var. minutissimum	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
331		Gomphonema olivaceum var.	^	^		^	^	^	^	^	^	^	^			^	^	^	^		\vdash
332	6431	olivaceoides	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
333		Gomphonema olivaceum var. olivaceolacuum	С	С				С													
334		Gomphonema parvulum	С	С	С		С	C				С	С	С		С		С	С	С	С
335		Gomphonema parvulum var. exilissimum			Α															Α	
336		Gomphonema procerum	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
337	6435	Gomphonema productum						Α													
338		Gomphonema pseudoaugur						С	Α												Ш
339		Gomphonema pseudotenellum	_	_	_		_	Α			_	_	_	_				_			\vdash
340 341		Gomphonema pumilum	С	С	С		С	С			С	С	С	С				С		С	С
341		Gomphonema sarcophagus Gomphonema stauroneiforme																			Α
343		Gomphonema subtile					Α	Α													^
344		Gomphonema tenue	Α	Α	Α	Α	Α	,,	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
345		Gomphonema tergestinum	С	С				С													С
346	6999	Gomphonema ventricosum						Α													
347		Gomphonema vibrio	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
348		Gomphoneis transsylvanica																	С		\sqcup
349		Gyrosigma acuminatum			С			С				С	С					_	_		
350 351		Gyrosigma attenuatum Gyrosigma nodiferum						С										С	С	С	C
352		Hantzschia amphioxys sensu stricto						C													С
353		Hippodonta costulatiformis																			С
354		Mastogloia baltica	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
355		Mastogloia elliptica	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
356		Mastogloia grevillei	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
357		Mastogloia smithii var. lacustris	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
358		Melosira varians												С	С	С	С	С	С	С	С
359		Meridion circulare	_	_	_		_	C	_	_	_	_	_	_	_	_	_	_	_	_	C
360 361		Navicula absoluta Navicula accomoda	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	Α
361 362		Navicula accomoda Navicula adversa	C	C	C	C	C	A	C	C	C	C	C	C	C	C	C	C	C	C	$\vdash \vdash$
363		Navicula auversa Navicula angusta						Α													\vdash
364		Navicula antonii	С	С	С		С	С				С	С	С	С	С	С	С	С	С	С
365		Navicula arvensis var. major						С													
		Navicula asellus																			С
_		Navicula atomus	C	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Ш
368		Navicula atomus var. permitis	С	С	С	С	С	С	С	C	С	С	С	С	С	С	С	С	С	С	С
369		Navicula bacillum	С	С	С		С	C		Α		С	С	С	С	С	С	С		С	С
370 371		Navicula brockmannii Navicula bryophila			Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
ا /د	U+U I	rvavicuia di yopillia		l	Λ	Λ	Λ	l	Λ	Λ	Λ	_^	_^	Λ	Λ	Λ	Α.	Λ	Λ	$^{\wedge}$	$\overline{}$

lfd. Nr.	DV-Nr	Тахоп	DS 1.1	DS 1.2	DS 5	DS 6	DS 7	DS 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
372	6462	Navicula canoris						С				₹	₹								
373		Navicula capitata	С	С	С	С	С	С	С			С	С	С	С	С	С	С	С	С	С
374		Navicula capitata var. hungarica	C	С	С	С	С		C		С	С	С	C	C	С	C	C	C	C	С
375		Navicula capitata var. lueneburgensis	С	С	С		С					С	С	С	С	С	С	С	С	С	С
376 377		Navicula capitatoradiata Navicula cari	C	C C	С		C C	C C	С				C C	С		С	Α	C C		C	C
378		Navicula catalanogermanica	C	C		Α	C	C	A	Α	Α		C		Α	Α	A	C		C	
379		Navicula caterva			С		С														
380		Navicula cincta	С	С				С										С		С	С
381		Navicula citrus	_	-	-	_	_	С	-		_	-	_	-	-	_					_
382 383		Navicula clementioides Navicula clementis	C	C C	C C	C	C C	С	C C	С	C C	C	C C	C C	C C	C C	С	C C		C C	C
384		Navicula cocconeiformis	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A	Α	A	
385		Navicula concentrica	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
386		Navicula constans	С	С	_	_	_	С				_	_			_		-	-	-	С
387 388		Navicula costulata Navicula cryptocephala	C	C	C	C C	C	С	C C	С	С	C	C	C C	C C	C C	C C	C C	C	C	C C
389		Navicula cryptofallax	Č			Α	-	С	Č	-			-	С		-	Č	С	С	С	С
390		Navicula cryptotenelloides												С		С		С		С	С
391		Navicula cuspidata	С	С	С	С	С	С	С			С	С	С	С	С	С	С	С	С	С
392 393		Navicula dealpina	Α	Α	Α	Α	Α	_	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
394		Navicula declivis Navicula decussis	С	С	С		С	A C		Α	Α	С	С	С	С	С	С	С	С	С	С
395		Navicula densilineolata	Α	Α	Α	Α	Α	-	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
396	6475	Navicula detenta			Α			Α													
397		Navicula digitoradiata																			С
398		Navicula digitulus	_	^	^	^	_	Α	^	_	^	^	_	^	^	_	^	^	۸	۸	_
399 400		Navicula diluviana Navicula disjuncta	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
401		Navicula elginensis	С	С	С	С	С	С	С	Α	С	С	С	С		С	Α	С	С	С	С
402		Navicula erifuga						С													
403		Navicula exilis						Α													
404 405		Navicula festiva Navicula gallica var. perpusilla						A													Α
+		Navicula gastrum	С	С				С		Α				С	С	С		С		С	A
407		Navicula gastrum var. signata	С	С						Α				С	,	С		С		С	
408		Navicula goeppertiana	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	
_		Navicula gotlandica	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
410 411		Navicula gregaria Navicula halophila	C	C C	C C	C C	C C	C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C	C C
412		Navicula heimansioides	_	C	C	C	C	Α		C	C	C	C			C		C	C	C	
413	6497	Navicula helensis																		Α	
414		Navicula hoefleri						Α													
		Navicula hustedtii						C													
		Navicula ignota var. palustris Navicula integra	С	С				A C													С
		Navicula jaagii	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
419		Navicula jaernefeltii	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
420		Navicula jakovljevicii																			С
421 422		Navicula jentzschii Navicula joubaudii						С													Α
423		Navicula kotschyi					Α														
424		Navicula krasskei						Α													
425		Navicula lacunolaciniata				С						С	С								Ш
426		Navicula laevissima	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
427 428		Navicula lanceolata Navicula lapidosa	С	С	С	С	С	C A	С	С	С	С	С	С	С	С	С	С	С	С	С
_		Navicula laterostrata						^													Α
430		Navicula lenzii	Α	Α																	Α
431		Navicula leptostriata						Α													
432	16337	Navicula levanderii	1			<u> </u>	<u> </u>	Α		<u> </u>	<u> </u>		<u> </u>			<u> </u>					Ш

											,					,					
lfd. Nr.	DV-Nr	Тахоп	DS 1.1	DS 1.2	DS 5	9 SQ	2 SQ	DS 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
433	6510	Navicula libonensis						С													
434	16339	Navicula longicephala var. vilaplanii																			С
	16012	Navicula maceria						Α													
	6513	Navicula mediocris	_	_	_		_	Α	_	_	_	_	_	_	_	_	_	_	_		_
437 438	6094 6514	Navicula menisculus Navicula menisculus var. grunowii	C	C C	C	С	C C	С	С	С	С	C	C	C C	C C	C	C C	C C	C C	C C	C
-	16343	Navicula menisculus var. grunowii Navicula menisculus var. upsaliensis		C	C		C	C				C	C	С	C	С	C	С	С	С	С
440	6872	Navicula minuscula var. muralis												C		C			C		С
441	6095	Navicula minima					С					С	С								
442	6515	Navicula minuscula						Α													
443	6872	Navicula minuscula var. muralis						С													
444	6516	Navicula minusculoides	С	С	С	C	C	С	C	С	С	С	C	C	C	С	С	С	C	С	
445	6219	Navicula molestiformis	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	_
446	6861	Navicula monoculata	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	C
447 448	16584 16349	Navicula moskalii Navicula notha			Α			Α													C
449	6073	Navicula notna Navicula oblonga																		_	Α
450	6521	Navicula oligotraphenta	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
451	16672	Navicula opportuna						Α													
452	6522	Navicula oppugnata	С	С	С	С	C	С	С			С	С	С		С		С	С	С	С
453	16351	Navicula ordinaria																			Α
-	16353	Navicula perminuta			С																
455	6866	Navicula phyllepta	_	-		C	-	_	_	_		_		С	С	С	С	С	С	С	
456 457	6099	Navicula placentula Navicula porifera var. opportuna	С	С	С	С	С	C A	С	Α		С	С	С		С		С		С	С
457	16356 6524	Navicula praeterita	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
459	6100	Navicula practerna Navicula protracta	С	С	С		C	С		^		С	С	С				С	С	C	С
460	6525	Navicula pseudanglica	C	С	C	Α	С	C		Α		C	C	С			Α	C	C	C	С
461	6527	Navicula pseudobryophila						Α													
462	6865	Navicula pseudolanceolata																			С
463	6529	Navicula pseudoscutiformis	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
464	16028	Navicula pseudosilicula						Α													
	6530	Navicula pseudotuscula					C			Α				_			Α	C	C	C	Α
	6531 6533	Navicula pseudoventralis			Α	Α	Α	^	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	6102	Navicula pusio Navicula pygmaea						A C	С			С	С							-	С
	6103	Navicula radiosa			Α	Α	Α		Α	Α											Α
	6534	Navicula recens	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
471	6221	Navicula reichardtiana	С	С	С	Α	С	С										С		С	С
472	6535	Navicula reichardtiana var. crassa					C	С													
-	6104	Navicula reinhardtii	С	С	С	С	C	С	C	С	С	С	С	C	C	С	С	С	С	С	С
	16362	Navicula rhynchotella	С	С	С	С	С	C	С	С	С	С	С	С	С	С	С	С	С	С	C
	6536	Navicula capraphila	С	С	С	С	С	A C	С	С	С	С	С	С	С	С	С	С	С	С	Α
	6537 6538	Navicula saprophila Navicula schadei	Α	A	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
	6539	Navicula schmassmannii		/\	Α			Α													
	6926	Navicula schoenfeldii	С	С			С	С					С								
	6540	Navicula schroeterii						С	С												
481	6541	Navicula scutelloides	С	С			С	С		Α	Α			С	Α	С	Α	С		С	С
482	16368	Navicula seibigiana																			Α
-	6192	Navicula seminulum	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	C
	6873	Navicula slesvicensis	С	С	С	С	С	C	С	С	С	С	С	С	С	С	С	С	С	С	С
	6543 16034	Navicula soehrensis						Α													$\vdash \vdash$
-	16034 6544	Navicula soehrensis var. hassiaca Navicula soehrensis var. muscicola						A													
	6813	Navicula splendicula						C												-	
	6546	Navicula stroemii	Α	Α	Α	Α	Α	_	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	16673	Navicula stroesei					С			Α	Α	Α	Α				Α	С	С	С	
	6547	Navicula subalpina	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	16625	Navicula subconcentrica																			Α
493	6106	Navicula subhamulata																		Α	

	,			,	,		,	,		,	,	,	,	,							
lfd. Nr.	JN-ND	Тахоп	DS 1.1	DS 1.2	2 SQ	9 Sa	2 SQ	DS 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	WN1.81 2Q	DS 13.2	DS 14
494	6548	Navicula sublucidula						С													
495		Navicula subminuscula	С	С	С	С	С	C	С	С	С	С	С	С	С	С	С	С	С	С	С
496 497	6549 16588	Navicula submolesta Navicula subplacentula						Α													Α
498		Navicula subrotundata	С	С		Α	С	С													
499	6878	Navicula subtilissima						Α													
500	6551	Navicula suchlandtii						Α													
501		Navicula tridentula						Α													
502		Navicula tripunctata	С	С	С		С	С		_	_	_	С	С		С		С	С	С	С
503	6870	Navicula trivialis	С	С	С	С	С	C C	С	С	С	С	С	С		С		С		С	C C
504 505		Navicula trophicatrix Navicula tuscula	Α	Α	Α	Α	Α	C	Α	Α	Α	Α	Α	A	C A	Α	Α	A	C A	A	A
506		Navicula tuscula f. minor	С	С	Α	Α	Α	С	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
507		Navicula utermoehlii	С	С		Α	С	С						С				С		С	С
508	16037	Navicula variostriata						Α													
509		Navicula veneta	С	С	С	C	С	С	C	С	С	С	С	С	С	С	С	С	С	С	С
510		Navicula ventraloconfusa	-	_				Α						_	_	-	-	_	_	_	_
511 512		Navicula viridula	C	C	С			С						С	С	С	С	С	С	С	С
513		Navicula viridula - Sippen Navicula viridula var. linearis	C	C	Α	Α	Α	C	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
514		Navicula viridula var. rostellata			/\	/ \	/\		/ \	/\	/\	/\	/\	/\	/\	/ \	/ \	/\	/\	/\	C
515		Navicula vitabunda			Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
516	6560	Navicula vulpina	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
517	6561	Navicula wildii	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
518	16786	Navicula witkowskii																			С
519		Naviculadicta schaumburgii		_	C	A	C	_	A	Α	Α	C	C	C	A	A	A	C	C	C	C
520 521		Neidium affine Neidium alpinum	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
522		Neidium ampliatum	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
523		Neidium binodeforme																			С
524	6856	Neidium binodis						С													
525		Neidium bisulcatum						Α													
_		Neidium carterii						Α													
+		Neidium densestriatum						Α							Α	Α	Α	С		С	
528 529		Neidium dubium Neidium iridis						Α							А	А	А	C		C	
_		Neidium ladogensis						Α													
531		Neidium productum						Α													
532	6571	Neidium septentrionale						Α													
533		Nitzschia acicularis						С													
534		Nitzschia acula	.		Α		_	C						_							
535 536		Nitzschia alpina Nitzschia alpinobacillum	A	A	Α	A	A	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
537		Nitzschia amphibia	C	C	С	C	C	C					С	С				С	С	С	С
538		Nitzschia angustata				Α			Α	Α	Α				Α	Α	Α			Α	Α
539		Nitzschia angustatula						С													
540		Nitzschia aurariae				С															
541		Nitzschia bacilliformis	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
542		Nitzschia bryophila	-			_	_	Α	_			_	_	_	_	_	_	_	_	_	$\vdash \vdash \mid$
543 544		Nitzschia calida Nitzschia capitellata	C	C	C	C C	C	C	C C	C C	C	C	C	C	C C	C	C	C	C	C C	С
545		Nitzschia capitenata Nitzschia clausii	C			C		С	C										C	C	
546		Nitzschia communis	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	
547		Nitzschia constricta	С	C	C	C	C	C	C	C	C	С	С	C	C	C	C	С	C	C	С
548	6584	Nitzschia dealpina	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
549		Nitzschia debilis						С													
550		Nitzschia dissipata	С	С	С	_	С	С				С						С		С	
551 552		Nitzschia dissipata ssp. oligotraphenta Nitzschia dissipata var. media	-			Α	Α									1	1				\vdash
		Nitzschia dissipata var. media Nitzschia diversa	Α	Α	Α	Α	A		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
_		Nitzschia draveillensis	.,	-,	, · ·	-,	<i>-</i> `	С		, , <u>, , , , , , , , , , , , , , , , , </u>	-,	-,	<i>-</i> ,	<i>-</i> `	-,	.,	-,	-,	-,		- \
-																					

lfd. Nr.	DV-Nr	Тахоп	DS 1.1	DS 1.2	DS 5	DS 6	2 SQ	DS 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
555	6590	Nitzschia fibulafissa	^	^	^	^	٨		^	^	^			^	^	^	^	^	^	^	
	6589 6195	Nitzschia filiformis	A C	A C	A C	A C	A C	С	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	A C	
	6025	Nitzschia fonticola	С	С			С	С					С	С	_	С		С	С	С	С
558	6222	Nitzschia fossilis	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
559	6196	Nitzschia frustulum	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	
560	16749	Nitzschia garrensis						Α													
		Nitzschia gessneri	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
		Nitzschia gisela	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	
563 564		Nitzschia graciliformis	С	С				С						С		С		С	С	С	C
	6963 16051	Nitzschia heufleriana Nitzschia homburgiensis	C	C				Α						C		C		C	C	C	C
566	6114	Nitzschia hungarica	С	С	С	С	С	C	С	С	С	С	С	С	С	С	С	С	С	С	С
567	6595	Nitzschia inconspicua	С	С	С	С	С	С	С	С	С	С	С	C	С	С	С	С	С	C	C
568	6857	Nitzschia intermedia						С													
569	6597	Nitzschia lacuum				Α				Α	Α				Α		Α				Α
570	6888	Nitzschia levidensis	С	С	С	С	C	С	C	С	С	С	С	С	С	С	С	С	С	С	С
571	16102	Nitzschia levidensis var. salinarum	С	С	С	С	C	С	C	С	С	С	С	С	С	С	С	С	С	С	
572	16423	Nitzschia liebetruthii	С	С	С	С	C	С	C	С	С	С	С	С	С	С	С	С	С	C	-
573 574	6024	Nitzschia linearis	С	С	С	С	С	С	С			С	С	С	С	С	С	С	С	С	С
	16560 6599	Nitzschia linearis - Sippen Nitzschia linearis var. subtilis	С	С	С	С	С	C	С	С	С	С	С	С	С	С	С	С	С	С	\vdash
	6600	Nitzschia linearis var. tenuis	С	С	С	С	С		С	С	С	С	С	С	С	С	С	С	С	С	
	6198	Nitzschia microcephala	С	С	С	C	С	С	С	_	С	С	С	C	С	С	_	С	С	С	С
578	6011	Nitzschia palea var. palea	С	С	С	С	С	С	С		С	С	С	С	С	С	С	С	С	С	С
579	6603	Nitzschia palea var. debilis																			Α
580	6199	Nitzschia paleacea	С	С	С	С	С	C	С		C	С	С	С	С	С	С	С	С	C	С
581		Nitzschia paleaeformis						Α													
582		Nitzschia pura			Α	Α	Α	_													
		Nitzschia pusilla	_	^	^	_	^	С	^	Α	^	C	C	^	^	^	_	^	_	^	_
584 585	6607 6608	Nitzschia radicula Nitzschia regula	A	A	A	A	A		A	A	A	A	A	A	A	A	A	A	A	A	Α
586		Nitzschia sigmoidea	^	٨				С		^				C	C	C	C	С	С	C	С
_		Nitzschia sinuata var. delognei						С	С							Ŭ					Ŭ
		Nitzschia sinuata var. tabellaria					Α														
	6961	Nitzschia sociabilis	С	С	С	С	C	С	C		С	С	С	С	С	С		С	С	С	С
	6612	Nitzschia solita						С													
	6613	Nitzschia subacicularis						С						С	С	С	С	С	С	С	С
_	6960	Nitzschia sublinearis		-	A	A	A		A	Α	A	A	A	Α	Α	Α	Α	Α	Α	Α	Α
	6959 6924	Nitzschia subtilis Nitzschia supralitorea	C	C C	C	C C	C C	С	C C	C C	C	C	C	С	С	С	С	С	С	С	С
		Nitzschia tryblionella		C			C	С	C									C		C	
	6118	Nitzschia umbonata	С	С	С	С	С	C	С	С	С	С	С	С	С	С	С	С	С	С	С
597	16453	Nitzschia valdestriata						С													
598	6120	Nitzschia vermicularis						С													
		Nitzschia wuellerstorffii						С													
	6619	Peronia fibula						Α													\square
	6151	Pinnularia						Α													$\vdash \vdash$
		Pinnularia acrosphaggia						Α													\vdash
	6847 16542	Pinnularia acrosphaeria Pinnularia acrosphaeria						A													\vdash
	6877	Pinnularia acuminata						Α													\vdash
		Pinnularia alpina						Α													
	6621	Pinnularia anglica						Α													
608	6622	Pinnularia angusta						Α													
		Pinnularia appendiculata						Α													С
		Pinnularia bacilliformis						Α													igwdot
	16461	Pinnularia balfouriana			-			Α			-	-		-	-	-		-			\vdash
	6122	Pinnularia biceps						Α													$\vdash\vdash$
		Pinnularia borealis Pinnularia borealis var. rectangularis						A													\vdash
		Pinnularia borealis var. rectarigularis Pinnularia borealis var. scalaris						A													\vdash
217								· · ·											L		

lfd. Nr.	DV-Nr	Taxon	DS 1.1	DS 1.2	DS 5	DS 6	DS 7	8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
			۵	٥				DS	AI	ALT,	ALT	ALT/ BS /	ALT/ BS /	D)	Ď.	-		D	. SQ	Ď	
1		Pinnularia borealis var. thuringiaca Pinnularia brandeliformis						A													
617 618		Pinnularia brandelii						A													
619		Pinnularia brauniana						Α													
		Pinnularia braunii						Α													
621	6626	Pinnularia brebissonii						Α													С
622		Pinnularia brevicostata						Α													<u> </u>
623		Pinnularia cardinaliculus						Α													
624 625		Pinnularia cardinalis Pinnularia carminata						A													
		Pinnularia cleveiformis						A													
627		Pinnularia cleveiformis var. ventricosa						Α													
628	6630	Pinnularia cuneola						Α													
629	6631	Pinnularia dactylus						Α													
630		Pinnularia divergens						Α													—
631		Pinnularia divergens var. bacillaris						Α													
632 633		Pinnularia divergens var. decrescens Pinnularia divergens var. elliptica						A													
634		Pinnularia divergens var. ignorata						A													
+		Pinnularia divergens var. linearis						Α													
636		Pinnularia divergens var. undulata						Α													
637	6633	Pinnularia divergentissima						Α													
638		Pinnularia divergentissima var. martinii						Α													<u> </u>
639		Pinnularia divergentissima var. minor						Α													
640 641		Pinnularia elegans						A													
_		Pinnularia episcopalis Pinnularia esox						A													
643		Pinnularia esoxiformis						Α													
644		Pinnularia esoxiformis var. eifeliana						Α													
645	6634	Pinnularia falaiseana						Α													
		Pinnularia frauenbergiana						Α													<u> </u>
		Pinnularia gentilis						Α													
		Pinnularia gibba Pinnularia gibba var. linearis						C A													
		Pinnularia gibba var. mesogongyla						A													
651		Pinnularia gibbiformis						Α													
652		Pinnularia gigas						Α													
		Pinnularia globiceps						Α													
		Pinnularia halophila						Α													—
_		Pinnularia hemiptera Pinnularia ignobilis						A													
		Pinnularia ignobilis Pinnularia inconstans						A													
		Pinnularia infirma						Α													
		Pinnularia intermedia						Α													
		Pinnularia interrupta						Α													
		Pinnularia irrorata						Α													—
662		Pinnularia karelica						Α													
663 664		Pinnularia kneuckeri Pinnularia krookiformis						A													
		Pinnularia krookii						Α													
		Pinnularia kuetzingii	L					Α													
667	16473	Pinnularia lagerstedtii						Α													
		Pinnularia lata						Α													Щ
+		Pinnularia legumen						Α													
		Pinnularia legumiformis	-					A													\blacksquare
_		Pinnularia leptosoma Pinnularia lundii						A													
673		Pinnularia lundii var. baltica						Α													
		Pinnularia macilenta						Α													
675		Pinnularia maior						Α													
676	16069	Pinnularia maior var. transversa						Α													

lfd. Nr.	DV-Nr	Taxon	DS 1.1	DS 1.2	DS 5	9 SQ	DS 7	DS 8, DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
C77	CC 40	Dispulação manusci										•	4								
677 678	6649 16474	Pinnularia mayeri Pinnularia mayeri var. similis						A													
	6124	Pinnularia mesolepta						Α													
680	16475	Pinnularia mesolepta var. gibberula						Α													
681	16476	Pinnularia mesolepta var. intermedia						Α													
682	16477	Pinnularia mesolepta var. minuta						Α													\vdash
683 684	6125 16550	Pinnularia microstauron Pinnularia microstauron var. biundulata	Α	Α	Α	Α	Α	A A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	6650	Pinnularia microstauron var. brebissonii						Α													
686	6651	Pinnularia neomajor						Α													
687	6111	Pinnularia nobilis						Α													
688	6652	Pinnularia nodosa						Α													
689	6653	Pinnularia notabilis						Α													\vdash
	6654 6655	Pinnularia obscura Pinnularia oriunda						A A													
692	16865	Pinnularia ovata						Α													
693	6656	Pinnularia parallela						Α													
	16070	Pinnularia platycephala						Α													
695	6842	Pinnularia polyonca						Α													
	6657	Pinnularia problematica						Α													\vdash
	6658 16551	Pinnularia pseudogibba Pinnularia pseudogibba var. rostrata						A													\vdash
699	16071	Pinnularia pulchra						A													
-	16072	Pinnularia pulchra var. angusta						Α													
701	16552	Pinnularia renata						Α													
702	6659	Pinnularia rupestris						Α													
703	16478	Pinnularia rupestris var. cuneata						Α													
	16553 6660	Pinnularia ruttneri var. lauenburgiana Pinnularia schoenfelderi						A													\vdash
	16073	Pinnularia schroederii						A													
707	16074	Pinnularia silvatica						Α													
708	16075	Pinnularia similiformis						Α													
	6661	Pinnularia similis						Α													
		Pinnularia sinistra						Α													\vdash
	6957 6663	Pinnularia stauroptera Pinnularia stomatophora						A													\vdash
	16479	Pinnularia stomatophora var. triundulata						Α													
	6664	Pinnularia streptoraphe						Α													
715	16076	Pinnularia streptoraphe var. minor						Α													
		Pinnularia streptoraphe var. parva						Α													
_	6126 16481	Pinnularia subcapitata Pinnularia subcapitata var. elongata						A													\vdash
	6665	Pinnularia subcapitata var. hilseana						A													
	16554	Pinnularia subcapitata var. subrostrata						Α													
721	6666	Pinnularia subcommutata						Α													
	16555	Pinnularia subdivergens						Α													
	6667	Pinnularia subgibba	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	16482 16483	Pinnularia subgibba var. hustedtii Pinnularia subgibba var. undulata						A													
	6668	Pinnularia subinterrupta						Α													
	16556	Pinnularia submicrostauron						Α													
728	6669	Pinnularia subrostrata						Α													
729	6670	Pinnularia subrupestris						Α													
	16557	Pinnularia subrupestris var. parva						Α													
	6671 6672	Pinnularia suchlandtii Pinnularia sudetica						Α													
	16484	Pinnularia sudetica Pinnularia sudetica var. brittanica						A													
	6673	Pinnularia transversa						Α													
	6876	Pinnularia undulata						Α													
	6674	Pinnularia viridiformis						Α													
737	6128	Pinnularia viridis]	<u> </u>			Α													Ш

lfd. Nr.	DV-Nr	Тахоп	DS 1.1	DS 1.2	DS 5	DS 6	DS 7	DS 9, DS sauer	ALT nat	ALT/ BS pRh	ALT/ BS gRh	ALT/ BS Aue (VQ>1,5)	ALT/ BS Aue (VQ<1,5)	DS 10.1	DS 10.2	DS 11	DS 12	DS 13.1	DS 13.1NW	DS 13.2	DS 14
			_	_				DS 8, D	A	LTA	ALT	ALT/ BS	ALT/ BS		٥			٥	SQ	O .	
_		Pinnularia viridis var. commutata						Α													
_		Pinnularia viridoides						Α													
_		Pinnularia woerthensis						Α													
_		Rhaphoneis amphiceros																			С
742		Rhoicosphenia abbreviata	С	С	C		C	C					C	C	C	C		C	C	C	C
743		Rhopalodia gibba			Α	Α	Α	С	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
_		Rhopalodia gibba var. parallela	Α	Α	Α	Α	Α	•	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
745 746		Rhopalodia rupestris						Α												^	
-	6450 6225	Sellaphora alastos Simonsenia delognei						С												Α	
_		Stauroneis anceps						A													Α
749	16498	Stauroneis anceps Stauroneis anceps var. siberica	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
750		Stauroneis gracilis	/ \		/\	/\	/\		/ \				,,	/\	/ \	/ \	71	/\	/\	/ \	Α
751		Stauroneis kriegerii	С	С				С													C
752	6840	Stauroneis nobilis		_				A													
753		Stauroneis siberica	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α								Α
754	6131	Stauroneis smithii	С	С				С													С
755	6689	Stauroneis undata						Α													
756	16087	Stenopterobia curvula						Α													
757	6690	Stenopterobia delicatissima						Α													
758	16503	Stenopterobia densestriata						Α													
759	6133	Surirella angusta	С	C																	
_	16507	Surirella barrowcliffia						Α													
761	6691	Surirella bifrons						Α													
762	6693	Surirella brebissonii	С	С	С	C	С	С	C	С	С	С	С	С	C	C	C	С	C	C	С
_	6135	Surirella linearis						Α													
		Surirella linearis var. constricta																			Α
765	16091	Surirella linearis var. helvetica	_																	Α	
	6229	Surirella minuta	С	С				C													
-	6694	Surirella roba						A													
768	6137	Surirella robusta						A													
769 770	6097 16092	Surirella spiralis Surirella tenera						A													
771		Surirella turgida						A													
772	16519	Tabellaria binalis	-	1				A		1		1		 							
773	6091	Tabellaria flocculosa						^													Α
774	6698	Tabellaria ventricosa		1				Α		1		1		1							<i>,</i> ,
775		Triceratium favus		1						1		1									С

Die Bewertung erfolgt durch eine typspezifische Verrechnung der ökologischen Gruppen, wobei lediglich die Artenzahlen, nicht aber die Häufigkeiten der einzelnen Arten berücksichtigt werden (siehe Gleichung 4).

Gleichung 4: Berechnung des Referenzartenquotienten

$$RAQ = \frac{Taxazahl A - Taxazahl C}{Taxazahl A + Taxazahl C}$$

Um eine verlässliche Bewertung mit dem Modul Referenzartenquotient sicherzustellen, wird die Zahl der für eine gesicherte Bewertung erforderlichen indikativen Taxa für die Gewässer der Alpen, des Alpenvorlandes und der Mittelgebirge (ohne die Gewässer des Typs DS 6 und der Rheinaue) auf zwölf festgelegt. Für die Gewässer des Norddeutschen Tieflandes der Diatomeentypen DS 10.1 und DS 13.2 werden ebenfalls zwölf indikative Taxa für eine gesicherte Bewertung gefordert. Bei den Gewässern des Typs DS 6 und der Rheinaue sowie bei den Gewässern des

Norddeutschen Tieflandes der Diatomeentypen DS 11 und DS 12 sind es acht indikative Taxa (Tabelle 22). Wird dieser Wert auch bei einer über die Zählung hinausgehenden Durchmusterung des Präparats nicht erreicht, muss das Bewertungsergebnis der benthischen Diatomeen als ungesichert gelten. Dann kann lediglich eine ungesicherte Bewertung des Teilmoduls Diatomeen vorgenommen werden.

Tabelle 22: Anzahl der für eine gesicherte Berechnung des Referenzartenquotienten benötigte Taxa

Typisierung bzw. Grup- pierung nach Diato- meen	Typisierung künstlicher und erheblich veränderter Seen sowie der natürlichen Seen im karbonatischen Mittelgebirge	Anzahl der benötigten indikativen Taxa
	Alpen und Alpenvorland	
DS 1.2	karbonatische Gewässer der Alpen und des Alpenvorlands mit einer Volumenentwicklung < 0,4	12
DS 1.1	karbonatische Gewässer der Alpen und des Alpenvorlands mit einer Volumenentwicklung > 0,4	12
	Mittelgebirge incl. Oberrheinisches Tiefland	
DS 5	karbonatische geschichtete Gewässer des Mittelgebirges mit großem Einzugsgebiet (Volumenquotient > 1,5)	12
ALT /BS Aue	Altrheine und Baggerseen in der Rheinaue ohne Rheinanbindung, geschichtet, großes EZG	8
ALT /BS gRh	Altrheine und Baggerseen in der Rheinaue mit Rheinanbindung, geschichtet	8
DS 6	karbonatische ungeschichtete Gewässer des Mittelgebirges mit großem Einzugsgebiet (Volumenquotient > 1,5)	8
ALT nat	natürliche Altrheine, ungeschichtet	8
ALT /BS pRh	Altrheine und Baggerseen in der Rheinaue mit Rheinanbindung, ungeschichtet	8
DS 7	karbonatische geschichtete Gewässer des Mittelgebirges mit kleinem Einzugsgebiet (Volumenquotient < 1,5)	12
ALT /BS Aue	Altrheine und Baggerseen in der Rheinaue ohne Rheinanbindung, geschichtet, kleines EZG	8
DS 8	silikatische geschichtete Gewässer des Mittelgebirges mit großem Einzugsgebiet (Volumenquotient > 1,5)	12
DS 9	silikatische geschichtete Gewässer des Mittelgebirges mit kleinem Einzugsgebiet (Volumenquotient < 1,5)	12
	Norddeutsches Tiefland	
DS 10.1	karbonatische geschichtete Gewässer des Norddeutschen Tieflands mit großem Einzugsgebiet (VQ > 1,5)	12
DS 10.2	karbonatische geschichtete Gewässer des Norddeutschen Tieflands mit großem Einzugsgebiet (VQ > 1,5)	8
DS 11	karbonatische ungeschichtete Gewässer des Norddeutschen Tieflands mit großem Einzugsgebiet (VQ > 1,5) und einer Verweildauer von > 30 Tagen	10
DS 12	karbonatische ungeschichtete Gewässer des Norddeutschen Tieflands mit großem Einzugsgebiet (Volumenquotient > 1,5) und einer Verweildauer von 3 bis 30 Tagen	8
DS 13.1	Geschichtete Seen mit einer Verweilzeit über zehn Jahren	12
DS 13.1 _{Nordwest}	Geschichtete Seen mit einer Verweilzeit über zehn Jahren, im Nordwesetn Deutschlands gelegen	12
DS 13.2	Geschichtete Seen mit einer Verweilzeit zwischen zehn Jahren und einem Jahr (P-limitiert)	10
DS 14	karbonatische ungeschichtete Gewässer des Norddeutschen Tieflands mit kleinem Einzugsgebiet (Volumenquotient < 1,5	10
	Ökoregion unabhängig	
DS sauer	saure und versauerte Gewässer	12
	1	L

6.5.2.4 Zusatzkriterium Säuregrad

Das Zusatzkriterium Säuregrad ist für versauerte Gewässer relevant (DS sauer), kann jedoch für jeden Befund berechnet werden, um saure oder versauerte Gewässer zu ermitteln, sollte dieser Zustand noch nicht bekannt sein.

Die Ermittlung des Säuregrades erfolgt anhand der Summenprozente der quantitativ wichtigsten Indikatoren eines sauren Gewässerzustandes (Tabelle 23). Erreichen die Indikatoren der Versauerung in Summe eine Abundanz von mindestens 10%, wird der Befund mit dem ökoregionunabhängigen Typ "DS sauer" (≜ DSs) gerechnet. Dieser Typ entspricht prinzipiell bzgl. der Trophie und auch bzgl. der Referenzarten den silikatischen Seen der Mittelgebirge. Ab einer Abundanzsumme von 10% wird der DI_{Seen} stufenweise verringert (Tabelle 24).

In seltenen Ausnahmefällen kann ein saures Gewässer in einem karbonatisch geprägten Einzugsgebiet liegen und einem karbonatischen Typ zugeordnet werden. Dann muss entschieden werden, ob dieser See einer Entwicklung in den neutralen Bereich unterliegt (z.B. nach Aufgabe der Nutzung, die den niedrigen pH-Wert bewirkt). Ist dies der Fall, muss ggf. mit dem Typ "DS sauer" gerechnet werden und nach wirksam werden des Zusatzkriteriums Säuregrad abgestuft werden.

Tabelle 23: Säurezeiger in natürlichen, künstlichen und erheblich veränderten Seen

lfd. Nr	DV-Nr.	Taxon
1	6253	Achnanthes helvetica
2	6975	Eunotia exigua
3	6214	Eunotia incisa
4	6373	Eunotia paludosa
5	6884	Eunotia paludosa var. trinacria
6	6375	Eunotia rhomboidea
7	6383	Eunotia tenella
8	6485	Navicula festiva
9	6513	Navicula mediocris
10	16363	Navicula riparia
11	6543	Navicula soehrensis
12	16433	Nitzschia paleaeformis
13	16656	Pinnularia acidophila
14	6620	Pinnularia acoricola
15	16074	Pinnularia silvatica
16	6662	Pinnularia sinistra
17	6126	Pinnularia subcapitata
18	16481	Pinnularia subcapitata var. elongata
19	16554	Pinnularia subcapitata var. subrostrata

Das Zusatzkriterium Säuregrad hat auch informativen Charakter, in Abhängigkeit von der Häufigkeit der Säurezeiger wird der Säuregrad eines Gewässers wie folgt beschrieben (Tabelle 24):

Tabelle 24: Beschreibung des Säuregrades sowie Grad der Abwertung der DI_{Seen}.

Summenhäufigkeit Säurezeiger in %	Säuregrad	Abwertung des DI _{Seen}
10 bis 25	schwach sauer	um 0,25
26 bis 50	mäßig sauer	um 0,5
51 bis 99	stark sauer	um 0,75
100	sehr stark sauer	um 1

6.5.2.5 Ermittlung des Diatomeen-Index (DI_{Seen})

Die Gesamtbewertung der Teilkomponente Phytobenthos-Diatomeen erfolgt durch Verschneidung der Module "Trophie-Index (TI)" und "Referenzartenquotient (RAQ)" zum DI_{Seen}. Für diese Verschneidung werden die errechneten Werte der beiden Komponenten nach folgenden Formeln (Gleichung 5 bis Gleichung 8) umgerechnet und die so erhaltenen Ergebnisse arithmetisch zum Diatomeen-Index_{Seen} (DI_{Seen}) gemittelt.

Gleichung 5: Umrechnung des berechneten Trophiewertes TI_{Süd}

$$M_{TI_{Siid}} = 1 - ((TI_{Siid} - 1) * 0,25)$$
 $M_{TISiid} = Modul Trophie-Index Siid$
 $TI_{Siid} = berechneter Trophie-Index_{Siid}$

Gleichung 6: Umrechnung des berechneten Trophiewertes TI_{Nord} (verändert nach Schönfelder 2006, unveröffentlicht)

$$M_{TINord} = 0.8 - 0.8*((TI_{Nord} - TI_{Nord}_{H/G})/2,00) \\ M_{TINord} = 0.8 - 0.8*((TI_{Nord} - TI_{Nord}_{H/G})/2,00)$$

Tabelle 25: Wert des TI_{Nord} der Klassengrenze "sehr gut" – "gut"

Typ Diatomeen	Klassengrenze sehr gut/gut Tl _{Nord}
DS 5	2,24
DS 5.1	2,24
DS 5.2	2,74
DS 6	2,49
DS 6.1	2,49
DS 6.2	2,99
DS 7	1,74
DS 7.1	2,24
DS 13.1	1,99
DS 13.2/DS 10.1	2,24
DS 10.2	2,74
DS 14	2,24
DS 11	2,49
DS 12	2,99

Bei nach Gleichung 6 errechneten Modulwerten größer 1 wird das Ergebnis gleich 1 gesetzt. Bei Werten kleiner 0 wird der Modulwert gleich 0 gesetzt.

Gleichung 7: Umrechnung des typspezifisch berchneten Referenzartenquotienten

$$M_{RAQ} = (RAQ + 1) * 0.5$$
 $M_{RAQ} = Modul Referenzarten quotient$
 $= berechneter Referenzarten quotient$

Gleichung 8: Berechnung des DI_{Seen}

$$DI_{Seen} = rac{M_{RAQ} + M_{TI}}{2}$$
 $DI_{Seen} = Diatomeen-Index_{Seen}$
 $M_{RAQ} = Modul Referenzartenquotient$
 $M_{TI} = Modul Trophie-Index$

6.6 Gesamtbewertung von Litoralstellen in Seen mit Makrophyten & Phytobenthos

Die WRRL sieht die gesamte Organismengruppe Makrophyten & Phytobenthos als eine der vier biologischen Komponenten zur Bewertung des Gewässerzustandes. Daher müssen die Bewertungsverfahren, die für die beiden Teilkomponenten erarbeitet worden sind, als Module oder auch Metrics für die Bewertung im Sinne der Wasserrahmenrichtlinie betrachtet werden.

6.6.1 Bewertung von Litoralstellen

6.6.1.1 Verschneidung der Metrics Makrophyten und Diatomeen

Für die Gesamtbewertung der Seen mit der Biokomponente Makrophyten & Phytobenthos ist es unbedingt erforderlich, dass die Bewertungen der beiden Teilmodule Makrophyten und Diatomeen exakt nach den dort beschriebenen Methoden vorgenommen wird. Das setzt auch die korrekte Bestimmung des biozönotischen Typs voraus.

Um die Ergebnisse der Metrics Makrophyten und Diatomeen vergleichbar zu machen, müssen die Indexwerte umgerechnet werden. Eine einheitliche Skala von "0" bis "1" bietet sich an. Der Wert "1" bedeutet dabei bestmöglicher ökologischer Zustand / höchstes ökologisches Potential im Sinne der WRRL und damit Zustandsklasse 1 / Potentialklasse 2 und besser. "0" dagegen höchste Degradation des Gewässers, d. h. Zustandsklasse / Potentialklasse 5. Die Umrechnung für das Modul "Makrophyten" (Referenzindex, RI) erfolgt nach Gleichung 9. Das Ergebnis des Moduls "Diatomeen" (Diatomeenindex_{Seen}, DI_{Seen}) bewegt sich bereits auf dieser Skala und muss deswegen nicht umgerechnet werden.

Gleichung 9: Umrechnung des Moduls RI_{Seen} (Referenzindex_{Seen} Makrophyten) auf eine Skala von 0 bis 1.

$$M_{MP} = \frac{(RI_{Seen} + 100) * 0.5}{100}$$

$$M = Modul Makrophytenbewertung$$

$$RI_{Seen} = typbezogener berechneter Referenzindex_{Seen}$$

Die Berechnung des Indexes aus den Komponenten erfolgt nach Gleichung 10. Sollte ein berechnetes Einzelmodul als nicht gesichert angesehen werden müssen, wird der Makrophyten-Phytobenthos-Index für Seen (M&P_{Seen}) dem Ergebnis des gesicherten Moduls gleichgesetzt. Die Bewertung des Transekts gilt in einem solchen Fall als gesichert.

Das ungesicherte Ergebnis eines Teilmoduls geht nicht in die Ermittlung der Ökologischen Zustandsklasse bzw. des ökologischen Potentials ein, es kann zur Interpretation des Ergebnisses herangezogen werden. Ist das Kriterium zur Mindest-Gesamtquantität für ein gesichertes Makrophytenergebnis nicht erfüllt und ist das Ergebnis somit ungesichert, muss immer auf Makrophytenverödung geprüft werden (siehe Kapitel 6.5.1.2).

Gleichung 10: Berechnung des Indexwertes M&P_{Seen} zur Ermittlung des ökologischen Zustandes eines Sees bei zwei gesicherten Modulen.

$$M\&P_{Seen} = rac{M_{MP} + M_{D}}{2}$$
 $M\&P_{Seen} = Makrophyten \& Phytobenthos-Index für Seen}{M_{D} = Modul Makrophyten}{M_{D} = Modul Diatomeen}$

6.6.1.2 Ermitteln der Ökologischen Zustandsklasse bzw. des ökologischen Potentials

Getrennt nach Ökoregionen sind in Tabelle 26 bis Tabelle 49 die Grenzen des berechneten Index M&P_{Seen} für die Zuordnung der Ökologischen Zustandsklasse nach WRRL dargestellt. Die Grenzen des berechneten Potentials für die künstlichen und erheblich veränderten Gewässer finden sich in Tabelle 50 bis Tabelle 72. Im Falle einer ungesicherten Bewertung eines Moduls werden diese Ergebnisse zwar unterstützend zur Interpretation des Gesamtergebnisses herangezogen, aus der Ermittlung der Bewertung nach WRRL aber herausgelassen. Die Indexgrenzen für den Fall ungesicherter Einzelbewertungen sind ebenfalls in den genannten Tabellen aufgeführt.

Nicht bewertbar auf der Grundlage des derzeitigen Kenntnisstandes sind versalzte bzw. natürlich stark salzhaltige Seen. Versauerung kann indiziert aber nicht bewertet werden.

Ökologischer Zustand

Alpen und Alpenvorland

Bewertung mit den Modulen Makrophyten und Diatomeen

Tabelle 26: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Seen der Region Alpen und Alpenvorland

MATHES et al. (2002)	Тур 1	Тур 2, 3, 4								
Makrophyten	АКр	AKs								
Diatomeen	DS 1.2	DS 1.1 DS 1.2								
Ökologische Zustandsklasse										
1	1,00 - 0,69	1,00 - 0,80	1,00 - 0,73							
2	< 0,69 - 0,48	< 0,80 - 0,55	< 0,73 - 0,48							
3	< 0,48 - 0,26	< 0,55 - 0,28	< 0,48 - 0,26							
4	< 0,26 - 0,04	< 0,28 - 0,04	< 0,26 - 0,04							
5	< 0,04 - 0,00	< 0,04 - 0,00	< 0,04 - 0,00							

Bewertung mit dem Modul Diatomeen, anzuwenden bei ungesichertem Modul Makrophyten

Tabelle 27: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Seen der Region Alpen und Alpenvorland

Матне et al. (2002)		Тур 1		Typ 2, 3, 4							
Diatomeen		DS 1.2			S 1.	1	D	2			
Ökologische Zustandsklasse											
1	1,00	-	0,69	1,00	-	0,83	1,00	-	0,69		
2	< 0,69	-	0,44	< 0,83	-	0,58	< 0,69	-	0,44		
3	< 0,44	-	0,25	< 0,58	-	0,30	< 0,44	-	0,25		
4	< 0,25	-	0,06	< 0,30	-	0,06	< 0,25	-	0,06		
5	< 0,06	-	0,00	< 0,06	-	0,00	< 0,06	-	0,00		

Tabelle 28: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Diatomeen: Seen der Region Alpen und Alpenvorland

Матне s et al. (2002)	Ту	p 1		Тур 2, 3, 4						
Makrophyten	AI	АКр			K(s)					
Ökologische Zustandsklasse										
1	1,00		0,68	< 1,00		0,76				
2	< 0,68		0,51	< 0,76	-	0,51				
3	< 0,51	-	0,26	< 0,51	-	0,26				
4	< 0,26		0,01	< 0,26		0,01				
5	< 0,01	_	0,00	< 0,01	-	0,00				

Mittelgebirge

Bewertung mit den Modulen Makrophyten und Diatomeen

Tabelle 29: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Silikatisch geprägte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp MTSs bzw, DSs)

MATHES et al. (2002)		Тур 9						
Makrophyten	MTS							
Diatomeen	DS 9							
Ökologische Zustandsklasse								
1	1,00	-	0,80					
2	< 0,80	-	0,53					
3	< 0,53	-	0,28					
4	< 0,28	-	0,04					
5	< 0,04	-	0,00					

Tabelle 30: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Karbonatisch geprägte, geschichtete Seen des Mittelgebirges sowie Altrheine des Oberrheinischen Tieflandes in der Gewässerkategorie "natürlich"

MATHES et al. (2002)	Typ 5,	Typ 5, Altrheine Typ 7							
Makrophyten				M	Kg				
Diatomeen	DS 5, DS 5.1 (Alt/BS Aue, VQ>1,5), DS 5.2 (ALT/BS gRh)		DS 5.1 t/BS Aue, VQ>1,5), DS 5.2		DS 7.1 (Alt/BS Aue, VQ<1,5)		-		
Ökologische Zustandsklasse									
1	1,00		0,73	1,00		0,76	1,00		0,73
2	< 0,73	-	0,53	< 0,76		0,53	< 0,73	-	0,53
3	< 0,53	-	0,30	< 0,53	-	0,30	< 0,53		0,30
4	< 0,30	_	0,06	< 0,30		0,06	< 0,30		0,06
5	< 0,06	_	0,00	< 0,06		0,00	< 0,06		0,00

Tabelle 31: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Karbonatisch geprägte, polymiktische Seen des Mittelgebirges sowie Altrheine des Oberrheinischen Tieflandes in der Gewässerkategorie "natürlich"

MATHES ET AL. (2002) Makrophyten	Typ 6, Altrheine MKp
Diatomeen	DS 6, DS 6.1 (ALT nat), DS 6.2 (ALT/BS pRh)
Ökologische Zustandsklasse	
1	1,00 - 0,77
2	< 0,77 - 0,53
3	< 0,53 - 0,30
4	< 0,30 - 0,06
5	< 0,06 - 0,00

Bewertung mit dem Modul Diatomeen, anzuwenden bei ungesichertem Modul Makrophyten

Tabelle 32: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesicherten Modul Makrophyten: Silikatisch geprägte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp DSs)

MATHES et al. (2002)	Тур 9				
Diatomeen		DS 9			
Ökologische Zustandsklasse					
1	1,00		0,83		
2	< 0,83	_	0,55		
3	< 0,55	-	0,30		
4	< 0,30	_	0,06		
5	< 0,06		0,00		

Tabelle 33: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, geschichtete Seen des Mittelgebirges sowie Altrheine des Oberrheinischen Tieflandes in der Gewässerkategorie "natürlich"

Mathes et al. (2002)	Typ 5, Altrheine	Typ 5, Altrheine Typ	
Diatomeen	DS 5, DS 5.1 (Alt/BS Aue, VQ>1,5), DS 5.2 (ALT/BS gRh)	DS 7	DS 7.1 (Alt/BS Aue, VQ<1,5)
Ökologische Zustandsklasse			
1	1,00 - 0,78	1,00 - 0,84	1,00 - 0,78
2	< 0,78 - 0,55	< 0,84 - 0,55	< 0,78 - 0,55
3	< 0,55 - 0,33	< 0,55 - 0,33	< 0,55 - 0,33
4	< 0,33 - 0,10	< 0,33 - 0,10	< 0,33 - 0,10
5	< 0,10 - 0,00	< 0,10 - 0,00	< 0,10 - 0,00

Tabelle 34: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, polymiktische Seen des Mittelgebirges sowie des Altrheine Oberrheinischen Tieflandes in der Gewässerkategorie "natürlich"

MATHES et al. (2002) Diatomeen	Typ 6, Altrheine DS 6, DS 6.1 (ALT nat), DS 6.2 (ALT/BS pRh)				
Ökologische Zustandsklasse					
1	1,00	- 0,78			
2	< 0,78	- 0,55			
3	< 0,55	- 0,33			
4	< 0,33	- 0,10			
5	< 0.10	- 0.00			

Tabelle 35: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesicherten Modul Diatomeen: Silikatisch geprägte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp MTSs)

MATHES et al. (2002)	Тур 9				
Makrophyten	MTS				
Ökologische Zustandsklasse					
1	1,00		0,76		
2	< 0,76	_	0,51		
3	< 0,51	-	0,26		
4	< 0,26	-	0,01		
5	< 0,01	-	0,00		

Tabelle 36: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, geschichtete und polymiktische Seen des Mittelgebirges sowie Altrheine des Oberrheinischen Tieflandes der Gewässerkategorie "natürlich"

Mathes et al. (2002) Makrophyten Ökologische Zustandsklasse	Typ 5, 7, Altrheine MKg		Тур	o 6, Altrheine MKp
1	1,00	- 0,68	1,00	- 0,76
2	< 0,68	- 0,51	< 0,76	- 0,51
3	< 0,51	- 0,26	< 0,51	- 0,26
4	< 0,26	- 0,01	< 0,26	- 0,01
5	< 0,01	- 0,00	< 0,01	- 0,00

Norddeutsches Tiefland

Bewertung mit den Modulen Makrophyten und Diatomeen

Tabelle 37: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Geschichtete Seen des Norddeutschen Tieflandes, Typ 10 nach Mathes et al. (2002)

MATHES et al. (2002)	Тур 10					
Makrophyten	TKg 10					
Diatomeen	DS	10.1			S 10.2	2
Ökologische Zustandsklasse						
1	1,00		0,73	1,00		0,73
2	< 0,73	-	0,53	< 0,73	-	0,53
3	< 0,53	-	0,30	< 0,53	-	0,30
4	< 0,30	-	0,06	< 0,30	-	0,06
5	< 0,06		0.00	< 0.06		0.00

Tabelle 38: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Geschichtete Seen des Norddeutschen Tieflandes, Typ 13 nach MATHES et al. (2002)

MATHES et al. (2002)		Typ 13	
Makrophyten		TKg13	
Diatomeen	DS 13.1	DS 13.1NW ¹	DS 13.2
Ökologische Zustandsklasse			
1	1,00 - 0,78	1,00 - 0,780	1,00 - 0,75
2	< 0,78 - 0,53	< 0,80 - 0,53	< 0,75 - 0,53
3	< 0,53 - 0,30	< 0,53 - 0,30	< 0,53 - 0,30
4	< 0,30 - 0,06	< 0,30 - 0,06	< 0,30 - 0,06
5	< 0,06 - 0,00	< 0,06 - 0,00	< 0,06 - 0,00

Tabelle 39: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 11 nach MATHES et al.

Mathes et al. (2002)	Ту	p 11			
Makrophyten	7	ТКр			
Diatomeen	DS 11				
Ökologische Zustandsklasse					
1	1,00		0,74		
2	< 0,74	-	0,53		
3	< 0,53	-	0,30		
4	< 0,30	-	0,06		
5	< 0,06	_	0,00		

-

 $^{^{\}rm I}$ entspricht dem Typ DS 13.11 in der Phylib-Software

Tabelle 40: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 12 nach MATHES et al.

MATHES et al. (2002)	Ту	р 12		
Makrophyten	-	ГКр		
Diatomeen	DS 12			
Ökologische Zustandsklasse				
1	1,00		0,74	
2	< 0,74	-	0,53	
3	< 0,53	-	0,30	
4	< 0,30	-	0,06	
5	< 0,06	-	0,00	

Tabelle 41: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 14 nach MATHES et al.

MATHES et al. (2002)	Ту	р 14		
Makrophyten	ТКр			
Diatomeen	DS 14			
Ökologische Zustandsklasse				
1	1,00		0,74	
2	< 0,74	-	0,53	
3	< 0,53	-	0,30	
4	< 0,30	-	0,06	
5	< 0,06	_	0,00	

Bewertung mit dem Modul Diatomeen, anzuwenden bei ungesichertem Modul Makrophyten

Tabelle 42: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Geschichtete Seen des Norddeutschen Tieflandes, Typ 10 nach MATHES et al. (2002)

MATHES et al. (2002)	Тур 10					
Diatomeen	D	S 10.1	1		OS 10.2	2
Ökologische Zustandsklasse						
1	1,00		0,78	1,00		0,78
2	< 0,78	-	0,55	< 0,78	-	0,55
3	< 0,55	-	0,33	< 0,55	-	0,33
4	< 0,33	-	0,10	< 0,33	-	0,10
5	< 0,10	1	0,00	< 0,10	-	0,00

Tabelle 43: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Geschichtete Seen des Norddeutschen Tieflandes, Typ 13 nach MATHES et al. (2002)

Mathes et al. (2002)	Тур 13						
Diatomeen	DS 13	3.1	DS 13.11	w ²	D	S 13	.2
Ökologische Zustandsklasse							
1	1,00 -	0,84	1,00 -	0,84	1,00		0,78
2	< 0,84 -	0,55	< 0,84 -	0,55	< 0,78	_	0,55
3	< 0,55 -	0,33	< 0,55 -	0,33	< 0,55	-	0,33
4	< 0,33 -	0,10	< 0,33 -	0,10	< 0,33	-	0,10
5	< 0,10	0,00	< 0,10 -	0,00	< 0,10	-	0,00

Tabelle 44: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 11 nach MATHES et al. (2002)

MATHES et al. (2002)		Тур 11		
Diatomeen		DS 11		
Ökologische Zustandsklasse				
1	1,00		0,78	
2	< 0,78	-	0,55	
3	< 0,55	-	0,33	
4	< 0,33	-	0,10	
5	< 0,10		0,00	

-

² entspricht dem Typ DS 13.11 in der Phylib-Software

Tabelle 45: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 12 nach MATHES et al. (2002)

MATHES et al. (2002)		Тур 12		
Diatomeen		DS 12		
Ökologische Zustandsklasse				
1	1,00	-	0,78	
2	< 0,78	-	0,55	
3	< 0,55	-	0,33	
4	< 0,33	-	0,10	
5	< 0,10		0,00	

Tabelle 46: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 14 nach MATHES et al. (2002)

MATHES et al. (2002)	Тур 14		
Diatomeen		DS 14	
Ökologische Zustandsklasse			
1	1,00	-	0,78
2	< 0,78	-	0,55
3	< 0,55	-	0,33
4	< 0,33	-	0,10
5	< 0.10	_	0.00

Tabelle 47: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Diatomeen; Geschichtete Seen des Norddeutschen Tieflandes, Typ 10

MATHES et al. (2002)	Ту	p 10	
Makrophyten	TKg10		
Ökologische Zustandsklasse			
1	1,00	-	0,68
2	< 0,68	-	0,51
3	< 0,51	-	0,26
4	< 0,26	-	0,01
5	< 0,01		0,00

Tabelle 48: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Diatomeen; Geschichtete Seen des Norddeutschen Tieflandes, Typ 13

MATHES et al. (2002)	Ту	р 13		
Makrophyten	TH	TKg13		
Ökologische Zustandsklasse				
1	1,00	-	0,71	
2	< 0,71	-	0,51	
3	< 0,51	-	0,26	
4	< 0,26	-	0,01	
5	< 0,01		0,00	

Tabelle 49: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Diatomeen: Ungeschichtete Seen des Norddeutschen Tieflandes, Typen 11, 12 und 14

MATHES et al. (2002)	Typ 11, 12 und 14		1 14
Makrophyten	ТКр		
Ökologische Zustandsklasse			
1	1,00	-	0,70
2	< 0,70	-	0,51
3	< 0,51	-	0,26
4	< 0,26	-	0,01
5	< 0.01	- 1	0.00

Ökologisches Potential

Das Ökologische Potential nach EG-WRRL wird in vier Klassen angegeben, wobei die erste Klasse (grün unterlegt) die Stufe "gut und besser" bedeutet. In den folgenden Tabellen wurde diese erste Klasse mit einer Grenze zwischen 1 und 2 angegeben. Diese Unterteilung ist rein informativ, deshalb sind die mit den Zahlen 1 und 2 bezeichneten Zeilen beide mit der von der WRRL für diese Stufe vorgegebenen Farbe grün markiert.

Alpen und Alpenvorland

Bewertung mit den Modulen Makrophyten und Diatomeen

Tabelle 50: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen: künstliche und erheblich veränderte Seen der Region Alpen und Alpenvorland

MATHES et al. (2002)		Typ 2, 3, 4			Typ 1, 2, 3, 4			
Makrophyten			Aŀ	((s)			Α	Кр
Diatomeen	DS	DS 1.1 DS 1.2			DS	1.2		
Ökologische Potentialklasse								
1	1,00	-	0,80	1,00	- C	,73	1,00	- 0,69
2	< 0,80	_	0,55	< 0,73	- C	,48	< 0,69	- 0,48
3	< 0,55	-	0,28	< 0,48	- C	,26	< 0,48	- 0,26
4	< 0,28		0,04	< 0,26	- C	,04	< 0,26	- 0,04
5	< 0.04		0.00	< 0.04	- C	.00.	< 0.04	- 0.00

Bewertung mit dem Modul Diatomeen, anzuwenden bei ungesichertem Modul Makrophyten

Tabelle 51: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: künstliche und erheblich veränderte Seen der Region Alpen und Alpenvorland

MATHES et al. (2002) Diatomeen	Typ 2, 3, 4 DS 1.1	Typ 1, 2, 3, 4 DS 1.2
Ökologische Potentialklasse		
1	1,00 - 0,83	1,00 - 0,69
2	< 0,83 - 0,58	< 0,69 - 0,44
3	< 0,58 - 0,30	< 0,44 - 0,25
4	< 0,30 - 0,06	< 0,25 - 0,06
5	< 0,06 - 0,00	< 0,06 - 0,00

Tabelle 52: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Diatomeen: künstliche und erheblich veränderte Seen der Region Alpen und Alpenvorland

Mathes et al. (2002)	Typ 1,	Typ 1, 2, 3, 4		, 3, 4
Makrophyten	AI	(p	AK	(s)
Ökologische Potentialklasse				
1	1,00	- 0,68	1,00	- 0,76
2	< 0,68	- 0,51	< 0,76	- 0,51
3	< 0,51	- 0,26	< 0,51	- 0,26
4	< 0,26	- 0,01	< 0,26	- 0,01
5	< 0,01	- 0,00	< 0,01	- 0,00

Mittelgebirge

Bewertung mit den Modulen Makrophyten und Diatomeen

Tabelle 53: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen: Silikatisch geprägte künstliche und erheblich veränderte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp MTSs bzw, DSs)

Mathes et al. (2002)	Тур 8, 9
Makrophyten	MTS
Diatomeen	DS 8, DS 9
Ökologische Potentialklasse	
1	1,00 - 0,80
2	< 0,80 - 0,53
3	< 0,53 - 0,28
4	< 0,28 - 0,04
5	< 0.04 - 0.00

Tabelle 54: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen: Karbonatisch geprägte, geschichtete künstliche und erheblich veränderte Seen des Mittelgebirges sowie Seen des Oberrheinischen Tieflandes

MATHES et al. (2002)	Typ 5, Altrheine Typ 7				
Makrophyten	MKg				
Diatomeen	DS 5, DS 5.1 (Alt/BS Aue, VQ>1,5), DS 5.2 (ALT/BS gRh)	DS 7	DS 7.1 (Alt/BS Aue, VQ<1,5)		
Ökologische Potentialklasse					
1	1,00 - 0,73	1,00 - 0,76	1,00 - 0,73		
2	< 0,73 - 0,53	< 0,76 - 0,53	< 0,73 - 0,53		
3	< 0,53 - 0,30	< 0,53 - 0,30	< 0,53 - 0,30		
4	< 0,30 - 0,06	< 0,30 - 0,06	< 0,30 - 0,06		
5	< 0,06 - 0,00	< 0,06 - 0,00	< 0,06 - 0,00		

Tabelle 55: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen: Karbonatisch geprägte, polymiktische künstliche und erheblich veränderte Seen des Mittelgebirges sowie des Seen Oberrheinischen Tieflandes

MATHES ET AL. (2002)	Тур	6, Altrheine	
Makrophyten Diatomeen	MKp DS 6, DS 6.1 (ALT nat), DS 6.2 (ALT/BS pRh)		
Ökologische Potentialklasse			
1	1,00	- 0,77	
2	< 0,77	- 0,53	
3	< 0,53	- 0,30	
4	< 0,30	- 0,06	
5	< 0.06	- 0.00	

Bewertung mit dem Modul Diatomeen, anzuwenden bei ungesichertem Modul Makrophyten

Tabelle 56: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesicherten Modul Makrophyten: Silikatisch geprägte künstliche und erheblich veränderte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp DSs)

Mathes et al. (2002) Diatomeen Ökologische Potentialklasse	Typ 8, 9 DS 8, DS 9		
1	1,00 - 0,83		
2	< 0,83 - 0,55		
3	< 0,55 - 0,30		
4	< 0,30 - 0,06		
5	< 0,06 - 0,00		

Tabelle 57: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, geschichtete künstliche und erheblich veränderte Seen des Mittelgebirges sowie des Seen Oberrheinischen Tieflandes

MATHES et al. (2002) Diatomeen	Typ 5, Altrheine DS 5, DS 5.1 (Alt/BS Aue, VQ>1,5), DS 5.2 (ALT/BS gRh)	DS 7	DS 7.1 (Alt/BS Aue, VQ<1,5)	
Ökologische Potentialklasse				
1	1,00 - 0,78	1,00 - 0,84	1,00 - 0,78	
2	< 0,78 - 0,55	< 0,84 - 0,55	< 0,78 - 0,55	
3	< 0,55 - 0,33	< 0,55 - 0,33	< 0,55 - 0,33	
4	< 0,33 - 0,10	< 0,33 - 0,10	< 0,33 - 0,10	
5	< 0.10 - 0.00	< 0.10 - 0.00	< 0.10 - 0.00	

Tabelle 58: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, polymiktische künstliche und erheblich veränderte Seen des Mittelgebirges sowie Seendes Oberrheinischen Tieflandes

MATHES et al. (2002) Diatomeen	Typ 6, Altrheine DS 6, DS 6.1 (ALT nat), DS 6.2 (ALT/BS pRh)		
Ökologische Potentialklasse			
1	1,00 -	0,78	
2	< 0,78	0,55	
3	< 0,55	0,33	
4	< 0,33	0,10	
5	< 0,10	0,00	

Tabelle 59: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesicherten Modul Diatomeen: Silikatisch geprägte künstliche und erheblich veränderte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp MTSs)

MATHES et al. (2002) Makrophyten	Typ 9 MTS		
Ökologische Potentialklasse			
1	1,00	- 0,76	
2	< 0,76	- 0,51	
3	< 0,51	- 0,26	
4	< 0,26	- 0,01	
5	< 0,01	- 0,00	

Tabelle 60: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, geschichtete und polymiktische künstliche und erheblich veränderte Seen des Mittelgebirges sowie Seen des Oberrheinischen Tieflandes

Mathes et al. (2002)	Typ 5	Typ 5, 7, Altrheine Typ 6, Altrhein		Typ 5, 7, Altrheine Typ 6, A		6, Altrheine
Makrophyten Ökologische Potentialklasse		MKg		МКр		
1	1,00	- 0,68	1,00	- 0,76		
2	< 0,68	- 0,51	< 0,76	- 0,51		
3	< 0,51	- 0,26	< 0,51	- 0,26		
4	< 0,26	- 0,01	< 0,26	- 0,01		
5	< 0.01	- 0.00	< 0.01	- 0.00		

Norddeutsches Tiefland

Bewertung mit den Modulen Makrophyten und Diatomeen

Tabelle 61: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen: Geschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 10 nach MATHES et al. (2002)

MATHES et al. (2002) Makrophyten Diatomeen	Typ 10 TKg10 DS 10.1	
Ökologische Potentialklasse		
1	1,00 - 0,73	
2	< 0,73 - 0,53	
3	< 0,53 - 0,30	
4	< 0,30 - 0,06	
5	< 0,06 0,00	

Tabelle 62: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen: Geschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 13 nach MATHES et al. (2002)

MATHES et al. (2002) Makrophyten Diatomeen Ökologische Potentialklasse	Typ 13 TKg13 DS 13.2		
1	1,00	_	0,75
2	< 0,75	-	0,53
3	< 0,53	_	0,30
4	< 0,30		0,06
5	< 0,06	_	0,00

Tabelle 63: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen: Ungeschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 11 und 12 nach MATHES et al.

MATHES et al. (2002)	Ту	/p 11			ур 12	!
Makrophyten		ТКр				
Diatomeen	D	S 11			DS 12	
Ökologische Potentialklasse						
1	1,00		0,74	1,00	_	0,74
2	< 0,74	_	0,53	< 0,74	_	0,53
3	< 0,53	-	0,30	< 0,53	-	0,30
4	< 0,30	_	0,06	< 0,30	-	0,06
5	< 0,06		0,00	< 0,06		0,00

Tabelle 64: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen: Ungeschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 14 MATHES et al.

MATHES et al. (2002) Makrophyten	Typ 14 TKp		
Diatomeen	DS 14		
Ökologische Potentialklasse			
1	1,00 - 0,74		
2	< 0,74 - 0,53		
3	< 0,53 - 0,30		
4	< 0,30 - 0,06		
5	< 0,06 - 0,00		

Bewertung mit dem Modul Diatomeen, anzuwenden bei ungesichertem Modul Makrophyten

Tabelle 65: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Geschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 10 nach MATHES et al. (2002)

MATHES et al. (2002) Diatomeen Ökologische Potentialklasse	Typ 10 DS 10.1		
1	1,00	- 2	0,78
2	< 0,78	-	0,55
3	< 0,55		0,33
4	< 0,33		0,10
5	< 0,10		0,00

Tabelle 66: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Geschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 13 nach MATHES et al. (2002)

MATHES et al. (2002) Diatomeen Ökologische Potentialklasse	Typ 13 DS 13.2		
1	1,00	_	0,78
2	< 0,78		0,55
3	< 0,55	_	0,33
4	< 0,33	_	0,10
5	< 0,10		0,00

Tabelle 67: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Ungeschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 11, 12 und 14 nach MATHES et al. (2002)

MATHES et al. (2002) Diatomeen Ökologische Potentialklasse	Typ 11 DS 11		Typ 12 DS 12		Typ 14 DS 14				
1	1,00	_	0.78	1,00		0.78	1.00	-	0.78
2	< 0,78		0,55	< 0,78	-	0,55	< 0,78	-	0,55
3	< 0,55	_	0,33	< 0,55	_	0,33	< 0,55	_	0,33
4	< 0,33		0,10	< 0,33	-	0,10	< 0,33	-	0,10
5	< 0,10		0,00	< 0,10	-	0,00	< 0,10	-	0,00

Tabelle 68: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Diatomeen; Geschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes

MATHES et al. (2002)	Typ 10		Typ 13			
Makrophyten Ökologische Potentialklasse		<u>Kg10</u>		I	TKg13	
1	1,00		0,68	1,00		0,71
2	< 0,68		0,51	< 0,71		0,51
3	< 0,51	-	0,26	< 0,51	-	0,26
4	< 0,26	-	0,01	< 0,26	-	0,01
5	0,01		0,00	0,01		0,00

Tabelle 69: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Diatomeen: Ungeschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes

MATHES et al. (2002) Makrophyten Ökologische Potentialklasse	Тур 11, 12, 14 ТКр		
1	1,00 - 0,70		
2	< 0,70 - 0,51		
3	< 0,51 - 0,26		
4	< 0,26 - 0,01		
5	0,01 0,00		

Ökoregion unabhängig

Bewertung mit den Modulen Makrophyten und Diatomeen

Tabelle 70: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen: Saure und versauerte künstliche und erheblich veränderte Seen

Mathes et al. (2002)	Тур 9			
Makrophyten	MTS inkl. Säuremodul			
Diatomeen	DS 9 inkl. Säuremodul			
Ökologische Potentialklasse				
1	1,00 - 0,80			
2	< 0,80 - 0,53			
3	< 0,53 - 0,28			
4	< 0,28 - 0,04			
5	< 0,04 - 0,00			

Bewertung mit dem Modul Diatomeen, anzuwenden bei ungesichertem Modul Makrophyten

Tabelle 71: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Saure und versauerte künstliche und erheblich veränderte Seen

Mathes et al. (2002)	Typ 9		
Diatomeen	DS 9 inkl. Säuremodul		
Ökologische Potentialklasse			
1	1,00 - 0,83		
2	< 0,83 - 0,55		
3	< 0,55 - 0,30		
4	< 0,30 - 0,06		
5	< 0,06 - 0,00		

Tabelle 72: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Diatomeen; Saure und versauerte künstliche und erheblich veränderte Seen

Mathes et al. (2002)	Typ 9		
Makrophyten	MTS inkl. Säuremodul		
Ökologische Potentialklasse			
1	1,00	- 076	
2	< 0,761	- 0,51	
3	< 0,51	- 0,26	
4	< 0,26	- 0,01	
5	< 0.01	- 0.00	

6.6.2 Bewertung von See-Wasserkörpern

Für die Bewertung eines natürlichen See-Wasserkörpers ist die Untersuchung einer ausreichenden Anzahl für den Wasserkörper repräsentativer Transekte oder eine Komplettkartierung **unumgängliche Voraussetzung**. Die Ermittlung der nötigen Anzahl der Transekte sowie die Auswahl deren Lage ist in Kapitel 6.2 beschrieben.

Die Ökologische Zustandsklasse nach WRRL wird für die natürlichen Gewässer anhand der nach Kapitel 6.3 erhobenen Daten für jedes untersuchte Transekt nach den Vorschriften in Kapitel 6.4 und 6.5 berechnet.

Die so ermittelten Transekt-Zustandsklassen werden arithmetisch gemittelt und ergeben die Ökologische Zustandsklasse des Wasserkörpers nach WRRL anhand der Biokomponente Makrophyten & Phytobenthos.

Ungesicherte Ergebnisse gehen nicht in die Ökologische Zustandsklasse des Gesamt-Wasserkörpers ein.

Eine zuverlässige Gewässerbewertung ist nur dann möglich, wenn mehr als die Hälfte der untersuchten Transekte gesichert bewertbar sind. Gewässer die diese Bedingung nicht erfüllen, können nicht gesichert mit der Biokomponenete Makrophyten und Phytobenthos bewertet werden.

Für die küstlichen und erheblich veränderten Gewässer wird das Ökologische Potential nach der gleichen Vorgehensweise und mit den gleichen Vorraussetzungen ermittelt.

Für die Bewertung eines AWB oder HMWB- See-Wasserkörpers ist die Untersuchung einer ausreichenden Anzahl für den Wasserkörper repräsentativer Transekte oder eine Komplettkartierung **unumgängliche Voraussetzung**. Die Ermittlung der nötigen Anzahl der Transekte sowie die Auswahl deren Lage ist in Kapitel 6.2 beschrieben.

Das Ökologische Potential nach WRRL wird für diese Gewässer anhand der nach Kapitel 6.3 erhobenen Daten für jedes untersuchte Transekt nach den Vorschriften in Kapitel 6.4 und 6.5 berechnet.

Die so ermittelten Potentialklassen der Transekte werden arithmetisch gemittelt und ergeben das Ökologische Potential des Wasserkörpers nach WRRL anhand der Biokomponente Makrophyten & Phytobenthos.

Ungesicherte Ergebnisse gehen nicht in die Ökologische Potentialklasse des Gesamt-Wasserkörpers ein.

Eine zuverlässige Gewässerbewertung ist nur dann möglich, wenn mehr als die Hälfte der untersuchten Transekte gesichert bewertbar sind. Gewässer die diese Bedingung nicht erfüllen, können nicht gesichert mit der Biokomponenete Makrophyten und Phytobenthos bewertet werden.

6.7 Anmerkungen zur Interpretation der Bewertungsergebnisse

Das Verfahren Phylib erlaubt durch seine Struktur neben der Bewertung eines OWK mit der Biokomponente Makrophyten & Phytobenthos nach EG-WRRL auch die Betrachtung der Einzelergebnisse von Probestellen, von Teilkomponenten oder einzelner Module. Eine solche Vorgehensweise dient der Interpretation der Gesamtbewertung. Folgende Bewertungsergebnisse können neben der OWK-Bewertung ermittelt werden:

- Biokomponente Makrophyten & Phytobenthos (M&P); Transekt-Information
- Teilkomponente Makrophyten; Transekt-Information
- Teilkomponente Diatomeen; Transekt-Information
- Teilkomponente Diatomeen, Trophieindex; Transekt-Information
- Teilkomponente Diatomeen, Referenzartenquotient (RAQ); Transekt-Information

Da die Teilkomponenten Unterschiede in Morphologie und Physiologie sowie räumliche und zeitliche Phänologie aufweisen und die verschiedenen Module und Metrics unterschiedliche Bewertungsziele haben, können zwischen diesen Einzelinformationen auch größere Abweichungen auftreten. In den meisten Fällen sind diese Diskrepanzen **nicht unplausibel**.

Im Folgenden werden die am häufigsten auftretenden Fälle näher beschrieben:

Die Transektbewertung M&P stimmt nicht mit der OWK-Bewertung M&P überein; bzw. die Transektbewertungen eines OWK unterscheiden sich.

Hydromorphologische Beeinträchtigungen oder stoffliche Einträge in einen See finden meistens vom Ufer aus statt. Diese Beeinflussungen sind, bezogen auf den Gesamtsee, relativ kleinräumig, z.B. eine Ufermauer oder der Zufluss von Drainagewasser bzw. Oberflächenabfluss aus landwirtschaftlich intensiv genutzten Flächen. Andere Uferbereiche eines OWK können dagegen in nahezu unbelastetem Gebiet liegen, z.B. Wald oder Moor. Die Biokomponente M&P wächst im Litoral und ist somit eine Uferkomponente. Sie spiegelt die unmittelbare Umgebung ihres Wuchsortes wider. Verschiedene Transekte eines OWK können gemäß unterschiedlicher unmittelbar auf sie wirkenden Einflüsse verschiedene M&P-Biozönosen in verschiedenen Degradationsstufen aufweisen.

Für die Planung von Maßnahmen ist das Auffinden von Belastungsquellen und Störgrößen nötig, diese transektbezogenen Informationen können dafür ausschlaggebend sein.

Die OWK-Bewertung M&P wird als arithmetisches Mittel aus den einzelnen Transektbewertungen M&P gebildet. Die Transekte werden im Vorfeld einer Beprobung festgelegt, sie sollen alle relevanten Ufermorphologien und –belastungen in ihrer Anzahl und Verteilung repräsentativ widerspiegeln. Sind die Einflüsse auf einen See entlang der Uferlinie heterogen, so weicht die OWK-Bewertung von Transektbewertungen oft ab.

Die Transektinformation der Makrophyten und / oder der Diatomeen stimmt nicht mit der Transektbewertung M&P überein; bzw.

Die Transektinformationen Makrophyten und Diatomeen stimmen nicht überein.

Die beiden Teilkomponenten unterscheiden sich stark in ihrer Morphologie und Physiologie.

Makrophyten weisen eine relativ große räumliche Ausbreitung auf und haben eine Generationszeit von ein bis mehreren Jahren. Ihre Versorgung mit Nährstoffen findet über die Blätter und den Sproß aus dem Freiwasser sowie über die Wurzeln aus dem Sediment statt. Im Sediment können durch ältere Ablagerungen vollständig andere Nährstoffverhältnisse herrschen als im Freiwasser. Auch einmalige und kurzfristige mechanische Belastungen können Makrophyten längerfristig beeinträchtigen.

Diatomeen können aufgrund ihrer kurzen Generationszeit innerhalb weniger Wochen eine an veränderte Umweltbedingungen angepasste Biozönose bilden, die sich in ihrer Artenzusammensetzung und den Abundanzen von der vorherigen stark unterscheidet. Die Diatomeenpopulation unterliegt nur den Einflüssen aus der unmittelbaren Umgebung. Die Aussagekraft ist auf einen kleinen Bereich beschränkt.

Bezüglich ihrer Nährstoffversorgung sind sie auf den Stoffaustausch mit dem Freiwasser angewiesen. Einmalige und kurzfristige mechanische Belastungen beeinträchtigen die Diatomeenpopulation nur für wenige Wochen.

Daher unterscheiden sich die beiden Organismengruppen Makrophyten und Diatomeen hinsichtlich ihrer zeitlich-räumlichen Indikation. Makrophyten integrieren über eine längere Zeitspanne von mehreren Jahren. Diatomeen reagieren schneller und können Veränderungen an einem Standort eher anzeigen. In Gewässern, die sich in der Phase der Reoligotrophierung befinden, kommt es oft vor, dass die Diatomeen bereits reagiert haben und bessere Verhältnisse anzeigen als die Makrophyten, denen durch die Nährstoffaufnahme aus dem Sediment mehr Ressourcen, z.T. aus der Belastungs-Vergangenheit des Sees zur Verfügung stehen. Eine bessere Makrophyten- als Diatomeenbewertung kann z.B. auf saisonbedingte Stoßbelastungen hinweisen.

Die Transektinformation Diatomeen-Trophieindex stimmt nicht mit der Transektinformation Diatomeen-RAQ überein.

Der Trophieindex indiziert die Nährstoffgehalte eines Gewässers und die biologische Produktion die dadurch entsteht. Das Modul "RAQ" quantifiziert den Grad der Abweichung einer rezenten Biozönose von einer an der untersuchten Stelle zu erwartenden Referenzzönose. Taxa, die in einem unberührten Zustand in einem Gewässer vorhanden sind, werden mit zunehmender Belastung erst durch tolerantere Arten und dann durch Belastungsanzeiger ersetzt. Im Zuge einer Sanierung oder Reoligotrophierung können die Referenzarten bei entsprechendem Wiederbesiedlungspotential zurückkehren. Durch die unterschiedlichen Bewertungsansätze können die Ergebnisse dieser Module voneinander abweichen. Mögliche Fälle und deren Gründe sind:

- Das Modul "Trophieindex" zeigt eine bessere Bewertung als das Modul "RAQ":
 - O Das Gewässer wurde in der Vergangenheit belastet, die Belastung findet nicht mehr statt. Die oligotraphenteren Arten sind zumindest teilweise wieder zurückgekehrt, die Referenzarten, benötigen einen längeren Zeitraum für die Wiederansiedelung oder

- das Gewässer besitzt für einen großen Teil der Referenzarten kein Wiederbesiedelungspotenzial
- Das Gewässer unterliegt einer Belastung, die nicht auf stofflicher Beeinträchtigung beruht und auch keine Auswirkung auf diese hat (z.B. Verbau mit nicht typspezifischem Substrat).
- Bei Versauerung treten oligotraphente Taxa auf und führen zu einer guten Trophiebewertung, während die Biozönose stark verarmt.
- Möglicherweise muss die Typzuordnung des biozönotischen Typs überprüft werden.
- Das Modul "Artenzusammensetzung und Abundanz" zeigt eine bessere Bewertung als das Modul "Nährstoffbewertung":
 - o In der vorhandenen Biozönose existiert ein Ungleichgewicht zugunsten der trophisch euryöken Referenztaxa. Dies kann auf eine beginnende Störung hindeuten.

Die OWK-Bewertung M&P stimmt nicht mit der Bewertung durch andere Biokomponenten oder mit chemischen Messwerten überein.

Die Biokomponente M&P indiziert die Verhältnisse am Gewässerufer. Sie hängt nicht ausschließlich aber doch stark von der Verfügbarkeit von Pflanzennährstoffen (hauptsächlich P und N) ab.

Die Belastungen, die auf einen See-OWK wirken, kommen in den meisten Fällen vom Einzugsgebiet, durch Zuflüsse, diffusem Eintrag z.B. aus landwirtschaftlich genutzten Flächen oder Besiedelung und wirken als erstes und am unmittelbarsten am Ufer, am Punkt der Einleitung, des Verbaus. Biokomponenten, die die Verhältnisse im Freiwasserkörper indizieren und in der Seemitte bzw. an der tiefsten Stelle beprobt werden, sind solchen Belastungen durch räumliche Entfernung und Verdünnungseffekte erst sehr viel später und in geringerem Umfang ausgesetzt. In diesem Fall wird die Uferkomponente eine schlechtere ÖZK indizieren als die Freiwasserkomponente. Stoffliche Belastungen aus der Vergangenheit finden sich oft in Sedimentschichten gespeichert, die die substratgebundene Uferkomponente M&P (hauptsächlich die Makrophyten) längere Zeit beeinflussen, bevor auch diese Teilkomponente die Verbesserungen anzeigen.

Chemisch-physikalische Messungen an einem Seewasserkörper werden in der Regel an der tiefsten Stelle eines OWK, meist etwa in der Seemitte, durchgeführt. Ein unmittelbarer Bezug dieser Messungen besteht nur zu den im Freiwasser vorkommenden Biokomponenten. Daher können Ergebnisse solcher Messungen ebenfalls von einer M&P-Bewertung am Ufer abweichen.

In Bezug auf die Nährstoffe greift die Philosophie der WRRL zur Bewertung des ökologischen Zustandes von Seen sehr gut. Die Nährstoffe werden von den Bio(-teil-)komponenten in unterschiedlicher Weise (Menge und Geschwindigkeit) umgesetzt. Durch die worst-case-Verschneidung der Biokomponenten kommt in der Regel eine plausible ökologische Bewertung zustande, die mehr beinhaltet als eine reine Trophiebewertung.

7 Zusammenfassung

Im Auftrag des Bayerischen Landesamts für Umwelt wurde der erste Verfahrensentwurf für die Bewertung künstlicher bzw. erheblich veränderter Seen mit der Teilkomponente Makrophyten nach WRRL (SCHAUMBURG et al. 2008) überarbeitet. Als Basis für die Weiterentwicklung wurden Daten der Bundesländer zur Verfügung gestellt. Sie enthält qualifizierte Neudaten zu 257 Transekten mit Untersuchungen aquatischer Makrophyten, die überwiegend aus dem norddeutschen Tiefland stammen, sowie Rückmeldungen zur Plausibilität der Bewertungsergebnisse von 162 Tiefland-Gewässerstellen.

Das Bewertungsverfahren für die Tiefland Gewässertypen TKp, TKg10 und TKg13 wurde grundlegend überarbeitet wobei neben der Anpassung der Indikatorartenliste ein Schwerpunkt auf die Überarbeitung der Zusatzkriterien "Mittlere UMG" und "Massenbestände" gelegt wurde. Für die Typen AK(s) und MKp, für die wenige Neudaten vorlagen, wurden die Indikatorarten überarbeitet und das Zusatzkriterium "Massenbestände" angepasst. Durch die Überarbeitung des Bewertungsverfahrens erhöht sich der Anteil der plausibel erscheinenden Bewertungsergebnisse von 59 % auf 91% der gesicherten Bewertungen.

Mit dem überarbeiteten Verfahren kann ein Großteil der künstlichen oder erheblich veränderten Stillgewässer bewertet werden. Eine Ausnahme bilden Talsperren mit regelmäßigen starken Wasserstandsschwankungen oder Gewässer, die regelmäßig ganz oder zu großen Teilen trocken fallen. Auch wenn diese Gewässer über eine ausreichende Makrophytenvegetation verfügen, lassen sie sich in vielen Fällen mit den vorhandenen Verfahren nicht plausibel bewerten.

Die usprünglich im Projektantrag vorgesehenen Überarbeitungsschwerpunkte bei der Teilkomponente Diatomeen wurden in Abstimmung mit dem LAWA-Expertenkreis Seen zum größten Teil in das Folgeprojekt O10.10 verschoben. Verschiedene Methoden zur Beprobung von Weichsedimenten wurden als ein Ergebnis des Workshops Norddeutsche Diatomeen vorgestellt.

Der Prozess der Interkalibrierung wurde durch fachliche Diskussion, Einspeisung deutscher Daten und Berechnungen unterstützt.

8 Literatur

- BECK, B. & MELZER, A. (2010): *Elodea nuttallii* in Tagebauseen. DGL-Tagungsbericht 2009 (Oldenburg), Hardegsen: 287-291.
- CASPER, S.J., KRAUSCH, H.-D. (1980): Pteridophyta und Anthophyta. 1. Teil. In: ETTL, H., GÄRTNER, G., HEYNIG, H. (Hrsg.): Süßwasserflora von Mitteleuropa, Bd. 23. Gustav Fischer Verlag, Stuttgart, New York, 403 S.
- CASPER, S.J., KRAUSCH, H.-D. (1981): Pteridophyta und Anthophyta. 2. Teil. In: ETTL, H., GÄRTNER, G., HEYNIG, H. (Hrsg.): Süßwasserflora von Mitteleuropa, Bd. 24. Gustav Fischer Verlag, Stuttgart, New York, 538 S.
- CORING, E., BÄTHE, J. & WEYER, K. VAN DE (2010): Bewertung von Seen in Niedersachsen auf der Basis von Makrophytendaten der Jahre 2003 und 2006. Unveröffentlichter Untersuchungsbericht im Auftrag des Niedersächsischen Landesbetriebs für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN): 24 S.
- DEPPE, E., LATHROP, R. (1993): Recent changes in the aquatic macrophyte community of Lake Mendota. Transactions of the Wisconsin Academy of Science, Arts and Letters 81: 89–94
- DIXIT, S., SMOL, J., KINGSTON, J. & CHARLES, D. (1992): Diatoms: powerful indicators of environmental change. Environ Sci Technol 26: S. 22-33.
- EUROPÄISCHE UNION (2000): Richtlinie 2000/60/EG des Europäischen Parlamentes und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik. Amtsblatt der Europäischen Union, L 327/1, 22.12.2000
- HAMANN, U. (2010): Erläuterungen zur Plausibilisierung der Phylib-Bewertung TK Makrophyten. Interner Bericht, Flintbek: 3 S.
- HILDEBRAND, A. (1991): Assoziationen von Bodendiatomeen pflanzensoziologisch charakterisierter Standorte. Diplomarbeit J. W. Goethe-Universität Frankfurt am Main, 143 S.
- HOEHN, E., RIEDMÜLLER, U., ECKERT, B., TWORECK, A. & LEBMANN, D. (2008): Ökologische Bewertung von künstlichen und erheblich veränderten Seen sowie Mittelgebirgsseen anhand der biologischen Komponente Phytoplankton nach den Anforderungen der EU-Wasserrahmenrichtlinie: Bewertungsmodul für Mittelgebirgsseen und Verfahrensanpassungen für Baggerseen, pH-neutrale Tagebauseen, Talsperren und Sondertypen im Tiefland. Abschlussbericht im Auftrag der LAWA (Projekt Nr O3.06): 98 S.
- HOFMANN, G. (1994): Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibliotheca Diatomologica 30, 241 S.

- HOFMANN, G. (1999): Trophiebewertung von Seen anhand von Aufwuchsdiatomeen. In: VON TÜMPLING, W. & FRIEDRICH, G. (Hrsg.): Methoden der Biologischen Wasseruntersuchung 2: Biologische Gewässeruntersuchung. Gustav Fischer Verlag, Jena.
- HOFMANN, G., WERUM, M., LANGE-BERTALOT, H. (2011): Diatomeen im Süßwasser-Benthos von Mitteleuropa. Ganter Verlag, Rugell.
- JÄGER, P., PALL, K., DUMFARTH, E. (2004): A method of mapping macrophytes in large lakes with regard to the requirements of the Water Framework Directive.- Limnologica 34, 140 146.
- KIELER INSTITUT FÜR LANDSCHAFTSÖKOLOGIE (2002): Dieksee-Studie: Gemeinsame Umsetzung von FFH-Richtlinie und Wasser-Rahmenrichtlinie am Beispiel des Dieksees im NATURA 2000-Gebiet DE 1828-301 "Suhrer See, Schöhsee, Dieksee und Umgebung", Teil III: Ufer- und Unterwasservegetation des Dieksees. Unveröffentl. Bericht im Auftrag des LANU Schleswig-Holstein.
- KLAPP, E., OPITZ VON BOBERFELD, W. (1990): Taschenbuch der Gräser. 12. überarb. Auflage, Verlag Paul Parey, Berlin, Hamburg, 282 S.
- KOHLER, A. (1978): Methoden der Kartierung von Flora und Vegetation von Süßwasserbiotopen. Landschaft + Stadt 10/2: 73–85
- KRAMMER, K. (1997a): Die cymbelloiden Diatomeen, eine Monographie der weltweit bekannten Taxa, Teil 1. Bibliotheca Diatomologica, 36. J. Cramer Verlag, Berlin –Stuttgart.
- KRAMMER, K. (1997b): Die cymbelloiden Diatomeen, eine Monographie der weltweit bekannten Taxa, Teil 2. Bibliotheca Diatomologica, 37. J. Cramer Verlag, Berlin –Stuttgart.
- KRAMMER, K. (2000): The genus Pinnularia. Diatoms of Europe 1, 703 S. Gantner Verlag, Rugell.
- KRAMMER, K. (2002): Cymbella. Diatoms of Europe 3, 584. Gantner Verlag, Rugell.
- KRAMMER, K. (2003): Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. Diatoms of Europe 4, 530 S. Gantner Verlag, Rugell.
- KRAMMER, K., LANGE-BERTALOT, H. (1986–1991, 2004): Süßwasserflora von Mitteleuropa, Bacillariophyceae. 2/1: Naviculaceae, 876 S.; 2/2: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 S.; 2/3: Centrales, Fragilariaceae, Eunotiaceae, 576 S.; 2/4: Achnanthaceae, 437 S.; Stuttgart, Fischer
- KRAUSCH, H.-D. (1996): Farbatlas Wasser- und Uferpflanzen. Verlag Eugen Ulmer, Stuttgart, 315 S.
- KRAUSE, W. (1997): Charales (Charophyceae). In: ETTL, H., GÄRTNER, G., HEYNIG, H., MOLLENHAUER, D. (Hrsg.): Süßwasserflora von Mitteleuropa, Bd. 18. Gustav Fischer Verlag, Jena, Stuttgart, Lübeck, Ulm, 202 S.
- LANGE-BERTALOT, H. (1993): 85 Neue Taxa. Bibliotheca Diatomologica 27, 454 S.

- LANGE-BERTALOT, H. (2001): Navicula sensu stricto. 10 Genera Separated from Navicula sensu lato Frustulia. Diatoms of Europe 2, 526 S. Gantner Verlag, Rugell.
- LANGE-BERTALOT, H., METZELTIN, D. (1996): Oligotrophie-Indikatoren. 800 Taxa repräsentativ für drei diverse Seen-Typen. Iconographia Diatomologica 2: 1–390
- LANGE-BERTALOT, H., MOSER, G. (1994): Brachysira. Monographie der Gattung. Bibliotheca Diatomologica 29: 1–212
- LEVKOV, Z. (2009): Amphora sensu lato. Diatoms of Europe, 5, 916 S. Gantner Verlag, Rugell.
- MATHES, J., PLAMBECK, G. & SCHAUMBURG, J. (2002): Das Typisierungssystem für stehende Gewässer in Deutschland mit Wasserflächen ab 0,5 km2 zur Umsetzung der Wasserrahmenrichtlinie. In: DENEKE, R. & NIXDORF, B. (Hrsg.): Implementierung der EU-WRRL in Deutschland: Ausgewählte Bewertungsmethoden und Defizite. BTU Cottbus, Aktuelle Reihe 5/02: S. 15-23.
- MAUCH, E., SCHMEDTJE, U., MAETZE, A. & FISCHER, F. (2003): Taxaliste der Gewässerorganismen Deutschlands zur Kodierung biologischer Befunde. Informationsberichte Bayer. Landesamt für Wasserwirtschaft 1/03: 1-388 + CD-ROM. Stand April (2006): http://www.bayern.de/LFW/technik/qkd/lmn/fliessgewaesser seen/taxa/taxa inet.xls
- MAUERSBERGER, H., MAUERSBERGER, R. (1996): Die Seen des Biosphärenreservates "Schorfheide-Chorin" eine ökologische Studie. Untersuchungen zur Struktur, Trophie, Hydrologie, Entwicklung, Nutzung, Vegetation und Libellenfauna. Dissertation Univ. Greifswald: 742 S.
- MEILINGER, P. (2010): Bewertung stehender Gewässer mit Makrophyten und Phytobenthos gemäß EG-WRRL Anpassungen des Verfahrens aufgrund erster Ergebnisse und Erfahrungen in den Ländern, Teilbereich Makrophyten. Unveröffentlichter Bericht im Auftrag des Bayerischen Landesamtes für Umwelt: 78 S.
- MELZER, A., SCHNEIDER, S. (2001): Submerse Makrophyten als Indikatoren der Nährstoffbelastung in Seen. In: STEINBERG, CALMANO, KLAPPER, WILKEN (Hrsg.): Handbuch Angewandte Limnologie. Verlag Ecomed. Kap. VIII-1.2.1: 1–13
- REICHARDT, E. (1999): Zur Revision der Gattung *Gomphonema*. Iconographia Diatomologica 8, 203 S. Ganter Verlag, Rugell.
- RÖNICKE, H., ANGELSTEIN, S. SCHULZE, M., GELLER, W. (2006): Invasion submerser Makrophyten im Tagebausee Goitsche. DGL-Tagungsbericht 2005 (Karlsruhe), Werder: 139-143.
- ROTHMALER, W. (1994a): Exkursionsflora von Deutschland. Bd. 3, Gefäßpflanzen: Atlasband. 9. durchges. und verb. Auflage, Gustav Fischer Verlag, Jena, Stuttgart, 753 S.
- ROTHMALER, W. (1994b): Exkursionsflora von Deutschland. Bd. 4, Gefäßpflanzen: Kritischer Band. 8. Auflage, Gustav Fischer Verlag, Jena, Stuttgart, 811 S.

- SCHAUMBURG, J. 2010: Fachliche Unterstützung der Geografischen WRRL-Interkalibrierungsgruppen (GIG) Deutschlands. Biokomponente Makrophyten & Phytobenthos in Flüssen und Seen. Schlussbericht im Auftrag der LAWA (ProjektNr. O3.08), Augsburg.
- SCHAUMBURG, J., SCHMEDTJE, U., SCHRANZ, C., KÖPF, B., SCHNEIDER, S., MEILINGER, P., STELZER, D., HOFMANN, G., GUTOWSKI, A. UND FOERSTER, J. (2004): Erarbeitung eines ökologischen Bewertungsverfahrens für Fließgewässer und Seen im Teilbereich Makrophyten und Phyto-benthos zur Umsetzung der EU-Wasserrahmenrichtlinie. Bayerisches Landesamt für Wasserwirtschaft, Abschlussbericht an das Bundesministerium für Bildung und Forschung (FKZ 0330033) und die Länderarbeitsgemeinschaft Wasser (Projekt Nr. O 11.03), München: 635 S. http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/publikationen/index.htm
- SCHAUMBURG, J., SCHMEDTJE, U., SCHRANZ, C., KÖPF, B., SCHNEIDER, S., MEILINGER, P., STELZER, D., HOFMANN, G., GUTOWSKI, A., FOERSTER, J. (2005): Bewertungsverfahren Makrophyten & Phytobenthos, Fließgewässer- und Seenbewertung in Deutschland nach EGWRRL. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft, Heft 1/05: 245 S., München.
- SCHAUMBURG, J., SCHRANZ, C. & STELZER, D. & A. VOGEL (2008): Bewertung stehender Gewässer mit Makrophyten und Phytobenthos gemäß EG-WRRL. Teil b: Bewertung künstlicher und stark veränderter natürlicher Seen sowie Talsperren mit Ableitung des ökologischen Potentials. Bayerisches Landesamt für Umwelt, Endbericht im Auftrag der LAWA (Projekt Nr. O2.06), Augsburg: 149 S. http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/publikationen/index.htm
- SCHAUMBURG, J., SCHRANZ, C. & STELZER, D. & HOFMANN, G. (2007b): Bundesweiter Test:

 Bewertungsverfahren "Makrophyten und Phytobenthos" in Seen zur Umsetzung der WRRL.

 Bayerisches Landesamt für Umwelt, Endbericht im Auftrag der LAWA (Projekt Nr. O4.04), München: 129 S.

 http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/publikationen/index.htm
- SCHAUMBURG, J., SCHRANZ, C. & STELZER, D. (2008): Bewertung stehender Gewässer mit Makrophyten und Phytobenthos gemäß EG-WRRL. Teil a: Anpassung des Bewertungsverfahrens für natürliche Seen. Bayerisches Landesamt für Umwelt, Endbericht im Auftrag der LAWA (Projekt Nr. O2.06), München: 31 S. http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/publikationen/index.htm
- SCHAUMBURG, J., SCHRANZ, C., MEILINGER, P., STELZER, D, VOGEL, A.:(2011): Bewertung von Seen mit Makrophyten & Phytobenthos gemäß EG-WRRL Anpassung des Verfahrens aufgrund erster Ergebnisse und Erfahrungen aus den Bundesländern. Endbericht. Bayerisches Landesamt für Umwelt, Augsburg.

- http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/publikationen/index.htm
- SCHAUMBURG, J., SCHRANZ, C., STELZER, D. & HOFMANN, G. (2007a): Verfahrensanleitung für die ökologische Bewertung von Seen zur Umsetzung der EU-Wasserrahmenrichtlinie: Makrophyten und Phytobenthos (Stand Oktober 2007) Bayerisches Landesamt für Umwelt, München: 65 S. http://www.lfu.bayern.de/wasser/forschung_und_projekte/phylib_deutsch/verfahrensanleitung/index.htm
- SCHMIEDER, K. (1997): Littoral zone GIS of Lake Constance: a useful tool in lake monitoring and autecological studies with submersed macrophytes. Aquatic Botany 58: 333–346
- SCHÖNFELDER, J., HOFMANN, G. & SCHÖNFELDER, I. (unveröffentlichtes Manuskript): Erweiterung des Moduls "Trophie-Index" für die Bewertung der Seen im Norddeutschen Tiefland.
- STELZER, D. (2003): Makrophyten als Bioindikatoren zur leitbildbezogenen Seenbewertung. Ein Beitrag zur Umsetzung der Wasserrahmenrichtlinie in Deutschland. Promotion am Department für Ökologie, Wissenschaftszentrum Weihenstephan der TU München: 151 S. mediatum digital collection management
- STELZER, D., VOGEL, A. (2006): Untersuchung von submersen Makrophyten und Phytobenthos in stehenden Gewässern des Freistaates Sachsen im Zuge der Umsetzung der WRRL. Unveröffentlichter Bericht im Auftrag der Landestalsperrenverwaltung Sachsen: 91 S.
- STELZER, D., VOGEL, A. (2007): Untersuchung von submersen Makrophyten und Phytobenthos in stehenden Gewässern des Freistaates Sachsen im Jahr 2007. Unveröffentlichter Bericht im Auftrag der Landestalsperrenverwaltung Sachsen: 79 S.
- SUCCOW, M., KOPP, D. (1985): Seen als Naturraumtypen. Petermanns Geogr. Mitt. 3: 161-170.
- WEYER, K. VAN DE (2007): Zur aquatischen Flora und Vegetation der Talsperren in Nordrhein-Westfalen. Decheniana 160: 15-24, Bonn
- WITKOWSKI, A. LANGE-BERTALOT, H., METZELTIN, M. (2000): Diatom flora of marine coasts1. Iconographia Diatomologica 7: 955 S. Ganter Verlag, Rugell.
- WÖRLEIN, F. (1992): Pflanzen für Garten, Stadt und Landschaft. Taschenkatalog, Wörlein Baumschulen, Dießen.

9 Anhang - Bewertungsergebnisse

Tabelle 73: Typ AK(s): alte Bewertung der Teilkomponente Makrophyten nach SCHAUMBURG et al. (2008); neue Bewertung mit veränderten Einstufungen der Indikatorarten; n.a. = Kriterium der UMG bei Gewässern mit schwankenden Wasserständen nicht angewendet

						alte Bew	zartun	α.				neue I) Onve	rtuna			
						anc bew	Vertuii	<u> </u>				iicuc i	I	rung			
Messstelle	Befund	mittllere UMG	Gesamtquantität submerser Arten	Anteil eingestufter Arten	Anteil Nuphar lutea und Nymphaea alba	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologisches Potential	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologisches Potential
53821	62847_Forggensee	4,8	344	100%	0%	n.a.	0	-4	1	0,478	3	n.a.	0	-4	1	0,478	3
53822	62848_Forggensee	4,8	552	98%	0%	n.a.	0	-13	1	0,436	3	n.a.	0	-13	1	0,437	3
	62849_Forggensee	4,8	72	100%	0%	n.a.	0	-64		0,181	4	n.a.	0	-64		0,181	4
	62850_Forggensee	4,8	144	100%	0%	n.a.	0	-2		0,490	3	n.a.	0	3		0,517	2
53825	62851_Forggensee	4,8	252	100%	0%	n.a.	0	-16	_	0,419	3	n.a.	0	-16		0,419	3
53826	62852_Forggensee	4,8	2	100%	0%	n.a.	0		0	0,250	4	n.a.	0		0	0,250	4
53827	62853_Forggensee	4,8	192	100%	0%	n.a.	0	15	1	0,573	2	n.a.	0	19	1	0,594	2
53828	62854_Forggensee	4,8	21	100%	0%	n.a.	0	-10	0	0,452	3	n.a.	0	-10	0	0,452	3
53829	62855_Forggensee	4,8	48	100%	0%	n.a.	0	-23	1	0,385	3	n.a.	0	-23	1	0,385	3
53830	62856_Forggensee	4,8	508	100%	0%	n.a.	0	14	1	0,570	2	n.a.	0	16	1	0,578	2
53831	62857_Forggensee	4,8	169	100%	0%	n.a.	0	-16	1	0,420	3	n.a.	0	-16	1	0,420	3
53832	62858_Forggensee	4,8	94	100%	0%	n.a.	0	0	1	0,500	3	n.a.	0	0	1	0,500	3
53841	62867_Schongauer Lechsee	4,6	583	100%	0%	n.a.	0	-43	1	0,286	3	n.a.	0	-38	1	0,310	3
53842	62868_Schongauer Lechsee	4,6	549	100%	0%	n.a.	0	-46	1	0,272	3	n.a.	0	-44	1	0,280	3
53843	62869_Schongauer Lechsee	4,6	291	100%	0%	n.a.	0	-53	1	0,234	4	n.a.	0	-53	1	0,234	4
53844	62870_Schongauer Lechsee	4,6	558	100%	0%	n.a.	0	-47	1	0,264	3	n.a.	0	-46	1	0,272	3
53845	62871_Schongauer Lechsee	4,6	514	100%	0%	n.a.	0	-52	1	0,241	4	n.a.	0	-50	1	0,249	4
53846	62872_Schongauer Lechsee	4,6	256	100%	0%	n.a.	0	-39	1	0,305	3	n.a.	0	-39	1	0,305	3
53847	62873_Schongauer Lechsee	4,6	466	100%	0%	n.a.	0	-41	1	0,296	3	n.a.	0	-35	1	0,325	3
53848	62874_Schongauer Lechsee	4,6	419	100%	0%	n.a.	0	-22	1	0,389	3	n.a.	0	-16	1	0,421	3

Tabelle 74: Typ MKp: alte Bewertung der Teilkomponente Makrophyten nach SCHAUMBURG et al. (2008); neue Bewertung mit veränderten Einstufungen der Indikatorarten; n.a. = Kriterium der UMG bei Gewässern mit schwankenden Wasserständen nicht angewendet

					alte l	Bewer	tung				neue I	Bewert	ung			
Bofind	mittlere UMG	Gesamtquantität submerser Arten	Anteil eingestufter Arten	Anteil Nuphar lutea und Nymphaea alba	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologisches Potential		Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologisches Potential
62859_Igelsbachsee	2,5	0				0		0	-		n.a	0		0	-	-
62860_Igelsbachsee	2,5	134				0	20	1	0,601	2	n.a	0	26		0,631	2
62861_Igelsbachsee	2,5	155	100%	0	n.a.	0	-69	1	1,155	4	n.a	0	-69	1	0,155	4
62862_Igelsbachsee	2,5	99	100%	0	n.a.	0	-100	1	0,000	5	n.a	0	-100	1	0,000	5
62863_Igelsbachsee	2,5	118	100%	0	n.a.	0	-36	1	0,318	3	n.a	0	-36	1	0,318	3
62864_Igelsbachsee	2,5	24	100%	0	n.a.	0	-100	0	0,000	5	n.a	0	-100	0	0,000	5
62865_Igelsbachsee	2,5	99	100%	0	n.a.	0	-100	1	0,000	5	n.a	0	-100	1	0,000	5
62866_Igelsbachsee	2,5	0	-	-	n.a.	0	-	0	-	-	n.a	0	-	0	-	-

Tabelle 75: Typ TKg10: alte Bewertung der Teilkomponente Makrophyten nach SCHAUMBURG et al. (2008); neue Bewertung mit veränderten Einstufungen der Indikatorarten; n.a. = Kriterium der UMG bei Gewässern mit schwankenden Wasserständen nicht angewendet; n.b. = Stelle nicht bewertbar z.B. wegen noch laufenden Auskiesung; M.V. = Makrophytenverödung

						alte	Bewer	tung				neue E	Bewert	ung			
Messstelle	Befund	mittllere UMG	Gesamtquantität submerser Arten	Anteil eingestufter Arten	Anteil Nuphar lutea und Nymphaea alba	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologische Zustandsklasse	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologische Zustandsklasse
		3,6	289	100%		0	-50	-3	1	0,233	_	0	-50	-4			4
				100%		0	-50	-1	1	0,243	4	0	-50	-1	1	0,243	4
51912	10000052_SP Knappenrode	3,6	231	100%	0%	0	0	-1	1	0,494	3	0	0	-29	1	0,355	3
51913	10000053_SP Knappenrode	3,6	93	100%	0%	0	-50	0	1	0,250	4	0	-50	-1	1	0,245	4
51914	10000054_SP Knappenrode	3,6	371	100%	0%	0	-50	-8	1	0,210	4	0	-50	-15	1	0,173	4
51915	10000055_SP Knappenrode	3,6	359	100%	0%	0	0	-1	1	0,494	3	0	0	-19	1	0,405	3
51916	10000060_SP Friedersdorf, Lohsa 1	3,0	312	100%	0%	0	0	-74	1	0,130	4	0	0	-83	1	0,087	4
51917	10000061_SP Friedersdorf, Lohsa 1	3,0	106	99%	25%	0	0	-3	1	0,486	3	0	0	-10	1	0,448	3
51918	10000062_SP Friedersdorf, Lohsa 1	3,0	652	100%	0%	0	0	29	1	0,393	3	-20	0	27	1	0,537	2
51919	10000063_SP Friedersdorf, Lohsa 1	3,0	200	100%	0%	0	-50	-95	1	0,000	5	0		-95	1	0,025	4
51920	10000065_SP Mortka, Lohsa 1	6,1	425	72%	0%	0	0	59	0	0,796	1	0	0	59	0	0,796	1
51921	10000056_SP Mortka, Lohsa 1	6,1	359	100%	0%	0	0	14	1	0,571	2	0	0	14	1	0,571	2
51922	10000050_SP Mortka, Lohsa 1	6,1	212	100%	0%	0	0	29	1	0,644	2	-10	0	28	1	0,592	2
		6,1	693	64%	0%	0	0	22	0	0,611	2	0	0	22	0	0,611	2
51924	10000058_SP Mortka, Lohsa 1	6,1	17	100%	0%	0	0	-88	0	0,059	4	0	0	-88	0	0,059	4
51925	10000059_SP Mortka, Lohsa 1	6,1	480	100%	0%	0	0	43	1	0,713	2	0	0	43	1	0,713	1

						alte	Bewer	tung				neue E	Bewert	ıng			
						4110	Dewel	lang				L		115			
Messstelle	Befund	mittllere UMG	Gesamtquantität submerser Arten	Anteil eingestufter Arten	Anteil Nuphar lutea und Nymphaea alba	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologische Zustandsklasse	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologische Zustandsklasse
51987	10000073_SP Borna	2,8	266	100%	0%	-50	0	0	1	0,252	4	-20	0	0	1	0,402	3
	_	2,8		100%		0	0	0	1	0,500		0	0	0	1	0,500	3
	_			100%		-50	0	2	0	0,260		-20	0	2	0	., .	3
	10000074_SP Borna	_	94	100%		0	0	-2	1	0,489		-	0	-2	_	- ,	3
		_		100%		0	0	0	1	0,500	3	-	0	0			3
	10000069_SP Witznitz	_		100%		n.a.		-90	1	0,000	5		0	-90	1	- ,	4
	10000068_SP Witznitz	,		100%			-50	-91	1	0,000	5		0	-91	1	- ,	4
	10000070_SP Witznitz			100%		n.a.	-50	-88	1	0,000	5		0	-88	1	-,	4
	10000067_SP Witznitz			100%			-50	-89	1	0,000	5		0	-89	1	- ,	4
	10000043_SP Witznitz	1,9	126	100%		n.a.		-85		0,075			0	-85		_	4
		3,2	l	100%			0	0		0,500			0	0			3
	62946_Speicher Dreiweibern	3,2 3,2	9	100% 100%		-50		0		0,500 0,500	_	-	0	0		- 9	3
	62948_Speicher Dreiweibern 62966_Niegripper See		8	100%		0	0	0		0,500		_	0	0	0	- ,	
	62968_Niegripper See		8 232	100%		0	0	0	1	0,500			0	0	1	-,	4 4
	62968_Niegripper See		232 99	100%		0	0	0	1	0,500	_		0	0	1		4
	62970_Niegripper See	_	99	100%		0	0	0	1	0,500			0	0	1		4
	62971_Niegripper See		72	100%		0	0	0	1	0,500		-50	0	0	1		4
	62972_Niegripper See			100%		0	0	0	1	0,500	_		0	0	1		4
	62974_Niegripper See	_		100%		0	0	-26	1	0,369			0	-26			4
	63055_Gr. See bei Northeim	3,0		100%		0	-50	-82		0,000	5		0		_		4
	63056 Gr. See bei Northeim	3,0		100%		0	-50	-98	n.b.	0,000	5	_	0	-98	n.b.	0,008	5
		2,3	72	100%		0	-50	0		0,250	4	-50	-50	0	n.b.	0,000	5
		_		100%		0	-50	0		0,250	4	-50	-50	0		0,000	5
				100%		-50		0	1	M.V,	5		-50	0	1	M.V.	5
			8	100%		0	-50	0	1	M.V,	5	-50	-50	0	1		5
		_		100%		-50		0	1	M.V,	5	-50	-50	0	1	M.V.	5
				100%		-	-		1	M.V,	5	-	-	-	1		5
				100%		0	-50	-82	1	0,00	5	0	0	-82			4
				100%		0	-50	-92	1	0,00	5		0	-92			4
				100%		0	-50	-93	1	0,00	5	0	0	-93			4
54098				100%		0	-50	-85	1	0,00	5	0	0	-85			4

Tabelle 76: Typ TKg13: alte Bewertung der Teilkomponente Makrophyten nach SCHAUMBURG et al. (2008); neue Bewertung mit veränderten Einstufungen der Indikatorarten; k.A. keine Angabe; Goitzschesee aufgrund des geringen Alters in neuere Bewertung ungesichert

						alta D	vont-	.a				non- T) over	vetroe -			
						alte Bev	vertur	ng				neue F	sewe	rtung			
Messstelle	Befund	mittlere UMG		Anteil eingestufter Arten	Anteil Nuphar lutea und Nymphaea alba	Korrekturfaktor UMG	Korrekturfaktor Massen		gesichert		Ökologisches Potential		Korrekturfaktor Massen	RI		RI (korrigiert und umgerechnet)	
53932	62915_Bockwitzer See		35	100%		0	0	0	0		3	-50	0	0	0	0,250	4
54104 54105	63080_Bockwitzer See	1,9 1,9	9	100% 100%		0	0	-11 0	0	- 7	3	-50 -50	0	-11 0	0	0,194 0,250	4
54105	63081_Bockwitzer See 63082_Bockwitzer See		28	100%		0	0	0	0	0,500	3	-50 -50	0	0	0	0,250	4
	63083 Bockwitzer See		24	100%		0	0	-33	0		3	-50	0	-33	0	0,083	4
	_	/	892	100%		0	0	-10	1		3	0	0	-1	1	0,494	3
53922	_		658	100%		0	0	-25	1		3	0	0	-22	1	0,388	3
53923	62906_BS Lohrwardt-Süd	k.A.	215	100%	0%	0	0	-15	1	0,426	3	0	0	-2	1	0,488	3
53924	_	k.A.	165	100%		0	0	-5	1	/	3	0	0	-1	1	0,497	3
53916			637	100%		0	0	-3	1		3	-10	0	23	1	0,565	2
53917	62900_Elfrather See		314	100%		0	0	-12	1	0,442	3	0	0	-7	1	0,467	3
53918	_		767	100%	_	0	0	-22	1		3	0	0	-10	1	0,452	3
53919	_		692	100%		0	0	-26	1		3	0	0	-21	1	0,396	3
53920 53933	_		302 233	100% 100%		0	0	-3 0	1		3	-10 0	0	0	1	0,462 0,498	3
53934	_		91	100%		0	0	0	1		3	0	0	0	-	0,498	3
54044	_		473	100%		0	0	-37	1		3	0	0	-36	0	0,300	3
54045		-	538	100%		0	0	-25	1		3	0	0	-1	0	0,493	3
54046	_		340	100%		0	0	-34	1	0,332	3	0	0	-12	0	0,438	3
54047	_		291	100%		-20	0	6	1		3	-10	0	31	0	0,605	2
54048	_	5,4	523	100%	_	0	0	-47	1		3	0	0	-40	0	0,300	3
54049		-	467	100%		-20	0	7	1		3	-10	0	22	0	0,562	2
54050	63026_Goitzschesee	5,4	255	100%	0%	0	0	-3	1	0,484	3	0	0	-3	0	0,486	3
54051	63027_Goitzschesee	5,4	590	100%	0%	0	0	-30	1	0,348	3	0	0	-18	0	0,409	3
		5,4	555	100%	0%	0	0	-27	1	0,366	3	0	0	-15	0	0,423	3
	_		476	100%		0	0	-5	1		3	-10	0	9	0	0,494	3
-	_		318	100%	_	0	0	0	1		3	-10	0	3	0	0,463	3
	_	_	136	100%		0	0	0	1		3	0	0	0	0	0,500	3
	_	5,4	234	100%		0	0	-53	1	0,233	4	0	0	-53	0	0,235	4
	_		548	100%		0	0	-9	1		3	-10	0	3	0	0,463	3
	_		415 28	100% 100%		-20	0 -50	4	0		3	-10 50	0 -50	12	0	0,510	2
_	_		125	100%		0	-50 0	0	1		3	-50 -50	-50 0	0	1	0,000	5 4
	_	0,3 2,8	10	100%		0	0	-10	0		3	-50 0	0	-10	_	0,250 0,450	3
	_	2,8 2,8	161	100%	_	0	0	-10	1		3	0	0	-10	1	0,450	3
53937	_	2,8	9	100%		0	0	-89	0		3 4	0	0	-89	0	0,388	4
53937	_		63	100%		0	0	-44	1		3	0	0	-44	1	0,030	3
53939	_		35	100%		0	0		0		4	0	0	-49	0	0,257	4
53940			232	100%		-50	0	28	1		3	-20	0	28	1	0,538	2
-		4,5	187	100%		-50	0	19	1		3	-20	0	19	1	0,494	3
53942	62925_Haselbacher See	4,5	107	100%	0%	-50	0	33	1	0,414	3	-20	0	33	1	0,564	2
		4,5	8	100%	0%	0	0	0	0	0,500	3	0	0	0	0	0,500	3
53944	62927_Haselbacher See	4,5	116	100%	0%	-50	0	31	1	0,405	3	-20	0	31	1	0,555	2
	63075_Kulkwitzer See		518	100%		0		25	1	0,624	2	0	0	26	1	0,631	2
54100	63076_Kulkwitzer See		341	100%		0		54		0,771	1	0	0	54	1	0,771	1
54101	63077_Kulkwitzer See	18,	449	100%	0%	0	0	82	1	0,908	1	0	0	89	1	0,947	1

					alte Be	wertui	ng 				neue F	sewe	ertung			
Messstelle Befund	_	Gesamtquantität submerser Arten	Anteil eingestufter Arten	Anteil Nuphar lutea und Nymphaea alba	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologisches Potential	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologisches Potential
54102 63078_Kulkwitzer See	_	426	100%		0	0	46	1	0,728	2		0	51	1	0,756	1
54103 63079_Kulkwitzer See	18,	289		0%	0	0	45	1	0,727	2	0	0	51	1	0,754	1
53873 10000009_Liblarer See	5,8	275	100%		0	0	-16	1	0,422	3	0	0	-13	1	0,436	3
53874 62875_Liblarer See 53875 62876 Liblarer See	5,8 5,8	326 309	98% 100%	0%	-20 -20	0	6 19	1	0,430	3		0	26 28		0,581 0,588	2
53876 62877 Liblarer See	5,8	349	95%	0%	0	0	-25	1	0,494	3	0	0		1	0,388	3
53877 62878 Liblarer See	5,8	246	100%		-20	0	15	1	0,375	3	-10	0			0,542	2
53878 62879 Liblarer See	5,8	156		0%	0	0	-26		0,372	3	0	0			0,397	3
53925 62908 Monbagsee	k.A.	215	100%		0	0	-28	-	0,360	3	0	0	-24		0,379	3
53926 62909_Monbagsee	k.A.	360	100%	0%	0	0	-29	1	0,353	3	0	0	-27	1	0,364	3
53927 62910_Monbagsee	k.A.	536	100%	0%	0	0	-10	1	0,451	3	0	0	-5	1	0,477	3
53928 62911_Monbagsee	k.A.	424	100%	0%	0	0	-62	1	0,192	4	0	0	-62	1	0,192	4
53883 62884_Neffelsee	11,	475	100%		0	0	0	1	0,500	3	0	0	0		0,500	3
53884 62885_Neffelsee	11,	624	100%		0	0	23		0,616	2	0	0	23		0,616	2
53886 62886_Neffelsee	11,	990	100%		0	0	36	1	0,678	2	0	0	36	1	0,678	2
53888 62887_Neffelsee	11,		100%		0	0	16	1	0,582	2	0	0	16	1	0,582	2
53999 62975_Raßnitzer See	5,5	245		0%	0	0	-7	1	0,465	3	-10	0	4	1	0,470	3
54000 62976_Raßnitzer See	5,5	321	100%		0	0	-10	1	0,450	3	0	0	-2	1	0,492	3
54001 62977_Raßnitzer See	5,5	335		0%	0	0	-19	1	0,406	3	0	0		1	0,446	3
54002 62978_Raßnitzer See	5,5	250		0%	0	0	-10	1	0,452	3	0	0	-6	1	0,468	3
54003 62979_Raßnitzer See	5,5	205	100%		0	0	-36	1	0,320	3	0	0	-36	1	0,320	3
54004 62980_Raßnitzer See 54005 62981 Raßnitzer See	5,5 5,5	199 332	100% 100%	0%	•	0	-25 21	1	0,374	3	0	0	-21 29		0,394 0,595	2
54006 62982 Raßnitzer See		332 474	100%		-20 -20	0	16	1	0,304	3	-10 -10	0	23		0,565	2
54007 62983 Raßnitzer See	L		100%		-20	0	3			3		0			0,516	2
54008 62984 Raßnitzer See	1	341	100%	_	-20	0	10	+	0,417	3		0	13		0,510	2
54014 62990 Runstädter See	9,2	646	100%		0	0	33	-	0,667	2		0	57		0,785	1
54015 62991 Runstädter See	_	446	100%		0	0	52	-	0,760	1	0	0	1	1	0,841	1
54016 62992 Runstädter See	9,2	570	100%		0	0	41	-	0,704	2	0	0	74		0,869	1
54017 62993 Runstädter See		438	100%		0	0	35	1	0,674	2	0	0	71		0,856	1
54018 62994_Runstädter See	_	615	100%		0	0	47	-	0,733	2	0	0	63		0,813	1
54019 62995_Runstädter See	9,2	544	100%	0%	0	0	29	1	0,647	2	0	0	64	1	0,821	1
54081 63057_Salzgittersee	6,9	289	100%	0%	0	0	-33	1	0,337	3	0	0	-8	1	0,460	3
54082 63058_Salzgittersee	6,9	447	100%	0%	0	0	-74	1	0,132	4	0	0	-87	1	0,064	4
53956 62939_Seelhausener See	7,1	300	100%	0%	-20	0	19	1	0,493	3	-10	0	30	1	0,602	2
53957 62940_Seelhausener See	7,1	341	100%	0%	-20	0	32	1	0,561	2	-10	0	50	1	0,702	2
53958 62941_Seelhausener See		491	100%		-20	0	5	-	0,426	3	-10	0	11		0,504	3
53959 62942_Seelhausener See			100%		-20	0	6		0,429	3	-10	0	9		0,494	3
53960 62943_Seelhausener See	+	364	100%		-20	0	4	-	0,422	3	-10	0	26		0,582	2
53961 62944_Seelhausener See		585	100%	_	0	0	-28		0,362	3	0	0	-4		0,482	3
54067 63043_Tagebausee Köckern		522	100%		-20	0	45		0,625	2		0	47		0,683	2
54068 63044_Tagebausee Köckern	_	586	100%		-20	0	12	-	0,460	3	-10	0	26		0,578	2
54069 63045_Tagebausee Köckern	6,1	700	100%	_	-20	0	5	1	0,425	3	-10	0	23		0,566	2
54070 63046_Tagebausee Köckern	-	578 573	100%		-20 -20	0	25 4	1	0,525 0,421	3	-10 -10	0	31 16		0,606	2
54071 63047_Tagebausee Köckern 54072 63048 Tagebausee Köckern	6,1 6,1	573 310	100%	_	-20 -20	0	35	1		2	-10 -10				0,528	2
54072 63048_Tagebausee Köckern 54025 63001_Tagebausee Luckenau		348	100% 100%		-20 -20	0	8	1	0,573 0,439	3	-10 -10	0	48 6	1	0,692 0,479	3
54026 63002_Tagebausee Luckenau	6,2	101	100%		0	0	-8		0,439	3	0	0	-9	1	0,479	3
54027 63003_Tagebausee Luckenau	6,2	194	100%		-20	0	4		0,400	3		0	4		0,433	3
	-,-	'	/ 0	- , 0		1			·, ·			~		•	-, -, -	

Section Sect							alte	Rev	vertur	ισ				neue I	Sewe	ertuno			
54028 6.3004_Tagebausee Luckenau 6.2 274 100% 0% 20 0 16 1 0.478 3 -10 0 18 1 0.541 2 54020 63005 Tagebausee Envirsech 4.0 290 100% 0% 20 0 0 1 0.500 2-2 0 4.1 1 0.603 2 54021 62997 Tagebausee Roitzsch 4.0 511 98% 2% -20 0 32 1 0.561 2 20 0 35 1 0.561 2 20 0 35 1 0.561 2 20 0 3 1 0.561 2 20 0 35 1 0.561 2 20 0 3 1 0.561 2 20 0 3 3 1 0.561 2 20 0 3 3 0 0 4 1 3 3 3 1 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>urce</th> <th>De.</th> <th>· CI CCI</th> <th><u> </u></th> <th></th> <th></th> <th></th> <th>11040</th> <th></th> <th>rtung</th> <th></th> <th></th> <th></th>							urce	De.	· CI CCI	<u> </u>				11040		rtung			
54029 63005_Tagebausee Luckenau 6,2 325 100% 0% 20 0 0 1 1 0,500 3 0 0 2 1 0,488 3 5 6 200 62996_Tagebausee Roitzsch 4,0 290 100% 0% 20 0 38 1 0,500 2 20 0 4 1 1 0,603 2 1 0,577 2 5 6 2 20 0 2 1 1 0,488 3 1 0,500 2 2 1 0,577 2 2 5 6 2 2 0 0 1 1 1 0,603 2 1 0 1 0,577 2 2 5 6 2 2 0 0 1 1 1 0,404 3 1 2 0 0 1 2 1 0,500 2 3 1 0 1 0,577 2 2 5 6 2 2 0 0 1 1 1 0,404 3 1 2 0 0 1 1 0,500 2 3 1 0 1 0,500 2 3 1 0 1 0,500 2 3 1 0 1 0,500 2 3 1 0 1 0,500 2 3 1 0 1 0,500 2 3 1 0 1 0,500 2 3 1 0 1 0 1 1 0,500 2 3 1 0 1 0 1 1 0,500 2 3 1 0 1 0 1 1 0,500 2 3 1 0 1 0 1 1 0,500 2 3 1 0 1 0 1 1 0,500 2 3 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1	Messstelle	Befund	mittllere UMG	Gesamtquantität submerser Arten	1			Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologisches Potential	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologisches Potential
54020 6.2996 Tagebausee Roitzsch 4,0 290 10% 0% 20 0 38 1 0.590 2 -20 0 41 1 0.603 2 54021 62997 Tagebausee Roitzsch 4,0 511 98% 2% 20 0 32 1 0.561 2 -20 0 31 0,502 3 54023 62999 Tagebausee Roitzsch 4,0 202 100% 0% 20 0 4 1 0.420 3 -20 0 8 1 0.502 3 1 0,502 3 -20 0 4 1 0.420 3 -20 0 8 1 0.502 0 -2 1 0.343 1 0.0 6 0 0.472 3 0 0 -2 7 1 0.586 2 0 1 1 0.401 1 0.001 1 1 0.002 3 1 0.002 <td>54028</td> <td>63004_Tagebausee Luckenau</td> <td>6,2</td> <td>274</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>16</td> <td>1</td> <td>0,478</td> <td>3</td> <td>-10</td> <td>0</td> <td></td> <td>1</td> <td>0,541</td> <td>2</td>	54028	63004_Tagebausee Luckenau	6,2	274					0	16	1	0,478	3	-10	0		1	0,541	2
54021 62997_Tagebausee Roitzsch 4,0 511 98% 2% 20 0 32 1 0,561 2 20 0 35 1 0,577 2 54022 62998_Tagebausee Roitzsch 4,0 30 100% 0% 20 0 7 1 0,434 3 20 0 8 1 0,440 3 54024 63000_Tagebausee Roitzsch 4,0 34 53% 47% 0 6 0 0.72 2 0 8 1 0,440 3 54088 63064_Tankumsee 5,5 334 100% 0% 20 0 27 1 0,186 4 1 0.42 1 0 2 1 1 0 0 2 1 0 0 1 1 0,404 3 10 0 1 1 0,404 3 10 0 1 1 0,404 3 10	54029	63005_Tagebausee Luckenau	6,2	325	100%	0%			0	0	1	0,500	3	Ů	0		1	0,488	3
54022 62998 Tagebausee Roitzsch 4,0 396 100% 0% 20 0 7 1 1 0,434 3 20 0 20 1 0,502 3 5 6 0 20 6 20 9 1 0,502 3 5 6 0 20 9 1 Tagebausee Roitzsch 4,0 202 100% 0% 20 0 4 1 0,402 3 20 0 8 1 0,440 3 5 6 0 20 0 4 1 0,402 3 20 0 8 1 0,440 3 5 6 0 2 0 0 2 1 0,402 3 2 0 0 8 1 0,440 3 5 6 0 0 2 0 1 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 0 6 0 0,472 3 0 0 0 6 0 0,472 3 0 0 0 0 6 0 0,472 3 0 0 0 0 6 0 0,472 3 0 0 0 0 6 0 0,472 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54020	62996_Tagebausee Roitzsch	4,0	290	100%	0%	-20		0	38	1	0,590	2	-20	0	41	1	0,603	2
54023 62999 Tagebausee Roitzsch 4,0 202 100% 0% 20 0 4 1 1 0,420 3 -20 0 8 1 0,440 3 56024 63000 Tagebausee Roitzsch 4,0 34 53% 47% 0 0 -6 0 0,472 3 0 0 -6 0 0,0472 3 5 0 0 -6 0 0,0472 3 5 0 0 -6 0 0,0472 3 5 0 0 -6 0 0,0472 3 5 0 0 -6 0 0,0472 3 5 0 0 0 -6 0 0,0472 3 5 0 0 0 -6 0 0,0472 3 5 0 0 0 -6 0 0,0472 3 5 0 0 0 -6 0 0,0472 3 5 0 0 0 -6 0 0,0472 3 5 0 0 0 -6 0 0,0472 3 5 0 0 0 -6 0 0,0472 3 5 0 0 0 -6 0 0,0472 3 5 0 0 0 -6 0 0,0472 3 5 0 0 0 -6 0 0,0472 3 5 0 0 0 1 0,0536 2 -10 0 0 27 1 0,0586 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54021	62997_Tagebausee Roitzsch	4,0	511	98%	2%	-20		0	32	1	0,561	2	-20	0	35	1	0,577	2
54024 63000 Tagebausee Roitzsch 4,0 34 53% 47% 0 0 -6 0 0,472 3 0 0 -6 0 0,472 3 0 0 -6 0 0,472 3 3 10,566 2 27 1 0,536 2 -10 27 1 0,536 2 -10 27 1 0,536 2 10 0 236 4 54030 63006 Wallendorfer See 5,3 337 100% 0% 0 0 -22 1 1,389 3 0 0 -14 1 0,429 3 54031 63007 Wallendorfer See 5,3 373 100% 0% 20 0 26 1 0,530 2 -10 0 41 1 0,431 3 10 0 49 1 0,532 2 -10 0 48 1 0,642 2 0 </td <td>54022</td> <td>62998_Tagebausee Roitzsch</td> <td>4,0</td> <td>396</td> <td>100%</td> <td>0%</td> <td>-20</td> <td></td> <td>0</td> <td>7</td> <td>1</td> <td>0,434</td> <td>3</td> <td>-20</td> <td>0</td> <td>20</td> <td>1</td> <td>0,502</td> <td>3</td>	54022	62998_Tagebausee Roitzsch	4,0	396	100%	0%	-20		0	7	1	0,434	3	-20	0	20	1	0,502	3
54087 63063_Tankumsee	54023	62999_Tagebausee Roitzsch	4,0	202	100%	0%	-20		0	4	1	0,420	3	-20	0	8	1	0,440	3
54088 63064_Tankumsee 5,5 373 100% 0% 20 -50 7 1 0,186 4 -10 50 7 1 0,236 4 54030 63006_Wallendorfer See 5,3 337 100% 0% 20 0 1 1,040 3 -10 0 1.1 1,040 3 -10 0 1.1 1 0,043 3 1.0 0 1.1 1 0,044 3 -10 0 1.1 1 0,044 3 -10 0 1.1 1 0,044 3 -10 0 1.1 0,040 3 -10 0 1.1 0,053 3 10 0 0 0 1.0 0,040 1 0,042 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	54024	63000_Tagebausee Roitzsch	4,0	34	53%	47%	0		0	-6	0	0,472	3	0	0	-6	0	0,472	3
54030 63000_Wallendorfer See 5,3 337 100% 0% 0 -22 1 0,389 3 0 0 -14 1 0,429 3 54031 63007_Wallendorfer See 5,3 273 100% 0% -20 0 26 1 0,530 2 -10 0 11 1 0,500 2 -10 0 11 1 0,503 3 1 0,000 0 2 0 40 1 0,598 2 -10 0 48 1 0,668 2 -10 0 48 1 0,660 1 0,749 1 0,598 2 -10 0 48 1 0,661 1 0,749 1 0,598 2 -10 0 40 1 0,598 2 -10 0 60 1 0,749 1 0,402 2 10 0 1 0,402 2 1 0 0	54087	63063_Tankumsee	5,5	334	100%	0%	-20		0	27	1	0,536	2	-10	0	27	1	0,586	2
54031 63007_Wallendorfer See 5,3 273 100% 0% -20 0 1 1 0,404 3 -10 0 11 1 0,503 3 3 54032 63008_Wallendorfer See 5,3 378 100% 0% -20 0 26 1 0,530 2 -10 0 61 1 0,756 1 54033 63009_Wallendorfer See 5,3 343 100% 0% -20 0 40 1 0,598 2 -10 0 48 1 0,668 2 54034 63010_Wallendorfer See 5,3 343 100% 0% -20 0 49 1 0,643 2 -10 0 0 1 0,749 1 54036 63012_Wallendorfer See 5,3 202 100% 0% -20 0 0 1 0,461 3 0 0 0 1 0,402 3 -10 0 66 1 0,782 1 2 20 0 <td< td=""><td>54088</td><td>63064_Tankumsee</td><td>5,5</td><td>373</td><td>100%</td><td>0%</td><td>-20</td><td></td><td>-50</td><td>7</td><td>1</td><td>0,186</td><td>4</td><td>-10</td><td>-50</td><td>7</td><td>1</td><td>0,236</td><td>4</td></td<>	54088	63064_Tankumsee	5,5	373	100%	0%	-20		-50	7	1	0,186	4	-10	-50	7	1	0,236	4
54032 63008 Wallendorfer See 5,3 378 100% 0% -20 0 26 I 0,530 2 -10 0 61 I 0,756 I 54033 63009 Wallendorfer See 5,3 482 100% 0% -20 0 49 I 0,643 2 -10 0 48 I 0,688 2 54034 63010 Wallendorfer See 5,3 482 100% 0% -20 0 49 I 0,643 2 -10 0 0 1 0,749 I 54036 63012 Wallendorfer See 5,3 492 100% 0% -20 0 1 1 0,462 3 -10 0 66 1 0,782 I 54037 63013 Wallendorfer See 5,3 202 100% 0% 20 0 1 0,402 3 -10 0 66 1	54030	63006_Wallendorfer See	5,3	337	100%	0%	0		0	-22	1	0,389	3	0	0	-14	1	0,429	3
54033 63009 Wallendorfer See 5,3 343 100% 0% -20 0 40 1 0,598 2 -10 0 48 1 0,688 2 54034 63010 Wallendorfer See 5,3 482 100% 0% -20 0 49 1 0,643 2 -10 0 0 1 0,749 1 54036 63011 Wallendorfer See 5,3 492 100% 0% -20 0 11 1 0,455 3 -10 0 36 1 0,500 3 54037 63013 Wallendorfer See 5,3 202 100% 0% -20 0 0 1 0,402 3 -10 0 66 1 0,782 1 54039 63015 Wallendorfer See 5,3 202 100% 0% -20 0 21 1 0,502 0 21 1 0	54031	63007_Wallendorfer See	5,3	273	100%	0%	-20		0	1	1	0,404	3	-10	0	11	1	0,503	3
54034 63010_Wallendorfer See 5,3 482 100% 0% 20 0 49 1 0.643 2 -10 0 60 1 0,749 1 54035 63011_Wallendorfer See 5,3 343 100% 0% 20 0 -8 1 0,461 3 0 0 0 1 0,500 3 54036 63012_Wallendorfer See 5,3 492 100% 0% -20 0 0 1 0,455 3 -10 0 66 1 0,632 2 54038 63014_Wallendorfer See 5,3 202 100% 0% -20 0 0 1 0,402 3 -10 0 66 1 0,782 1 54038 63014_Wallendorfer See 5,3 209 100% 0% -20 0 0 1 0,402 3 -10 0 24 1 0,622 2 1 0 0 0 17 <td< td=""><td>54032</td><td>63008_Wallendorfer See</td><td>5,3</td><td>378</td><td>100%</td><td>0%</td><td>-20</td><td></td><td>0</td><td>26</td><td>1</td><td>0,530</td><td>2</td><td>-10</td><td>0</td><td>61</td><td>1</td><td>0,756</td><td>1</td></td<>	54032	63008_Wallendorfer See	5,3	378	100%	0%	-20		0	26	1	0,530	2	-10	0	61	1	0,756	1
54035 63011_Wallendorfer See 5,3 343 100% 0% 0 0 -8 1 0,461 3 0 0 0 1 0,500 3 54036 63012_Wallendorfer See 5,3 492 100% 0% -20 0 11 1 0,455 3 -10 0 36 1 0,632 2 54037 63013_Wallendorfer See 5,3 202 100% 0% -20 0 0 1 0,402 3 -10 0 66 1 0,782 1 54038 63014_Wallendorfer See 5,3 202 100% 0% -20 0 0 1 0,402 3 -10 0 66 1 0,782 1 54038 63014_Wallendorfer See 5,3 202 100% 0% -20 0 0 17 1 0,503 3 -10 0 24 1 0,572 2 54108 63084_Werbeliner See 10 454 100% 0% 0% 0 0 -21 1 0,562 2 <td>54033</td> <td>63009_Wallendorfer See</td> <td>5,3</td> <td>343</td> <td>100%</td> <td>0%</td> <td>-20</td> <td></td> <td>0</td> <td>40</td> <td>1</td> <td>0,598</td> <td>2</td> <td>-10</td> <td>0</td> <td>48</td> <td>1</td> <td>0,688</td> <td>2</td>	54033	63009_Wallendorfer See	5,3	343	100%	0%	-20		0	40	1	0,598	2	-10	0	48	1	0,688	2
54036 63012_Wallendorfer See 5,3 492 100% 0% -20 0 11 1 0,455 3 -10 0 36 1 0,632 2 54037 63013_Wallendorfer See 5,3 202 100% 0% -20 0 0 1 0,402 3 -10 0 66 1 0,782 1 54038 63014_Wallendorfer See 5,3 202 100% 0% -20 0 1 0,402 3 -10 0 66 1 0,782 1 54108 63084_Werbeliner See 10,444 100% 0% 0 0 17 1 0,585 2 0 0 21 1 0,662 2 0 0 17 1 0,585 2 0 0 21 1 0,394 3 0 0 -17 1 0,414 1 0,629 2 0 0 21 <	54034	63010_Wallendorfer See	5,3	482	100%	0%	-20		0	49	1	0,643	2	-10	0	60	1	0,749	1
54037 63013_Wallendorfer See 5,3 202 100% 0% -20 0 0 1 0,402 3 -10 0 66 1 0,782 1 54038 63014_Wallendorfer See 5,3 202 100% 0% -20 0 0 1 0,402 3 -10 0 66 1 0,782 1 54039 63015_Wallendorfer See 5,3 209 100% 0% -20 0 21 1 0,503 3 -10 0 24 1 0,572 2 54108 63084_Werbeliner See 10,454 100% 0% 0 0 0 17 1 0,585 2 0 0 21 1 0,664 2 4 10,664 2 4 10,686 8 10 4 100% 0% 0 0 12 1 0,562 2 0 0 24 1 0,686 2	54035	63011_Wallendorfer See	5,3	343	100%	0%	0		0	-8	1	0,461	3	0	0	0	1	0,500	3
54038 63014_Wallendorfer See 5,3 202 100% 0% -20 0 0 1 0,402 3 -10 0 66 1 0,782 1 54039 63015_Wallendorfer See 5,3 209 100% 0% -20 0 21 1 0,503 3 -10 0 24 1 0,572 2 54108 63084_Werbeliner See 10, 454 100% 0% 0 0 0 17 1 0,585 2 0 0 21 1 0,604 2 54110 63086_Werbeliner See 10, 382 100% 0% 0 0 0 12 1 0,562 2 0 0 24 1 0,622 2 54111 63086_Werbeliner See 10, 300 100% 0% 0 0 0 12 1 0,562 2 0 0 14 1 0,662 2 0 14 1 0,568 2 0 0 14 1 0,568 <td>54036</td> <td>63012_Wallendorfer See</td> <td>5,3</td> <td>492</td> <td>100%</td> <td>0%</td> <td>-20</td> <td></td> <td>0</td> <td>11</td> <td>1</td> <td>0,455</td> <td>3</td> <td>-10</td> <td>0</td> <td>36</td> <td>1</td> <td>0,632</td> <td>2</td>	54036	63012_Wallendorfer See	5,3	492	100%	0%	-20		0	11	1	0,455	3	-10	0	36	1	0,632	2
54039 63015_Wallendorfer See 5,3 209 100% 0% -20 0 21 1 0,503 3 -10 0 24 1 0,572 2 54108 63084_Werbeliner See 10,454 100% 0% 0 0 17 1 0,585 2 0 0 21 1 0,604 2 54109 63085_Werbeliner See 10,382 100% 0% 0 0 -21 1 0,394 3 0 0 -17 1 0,415 3 54110 63086_Werbeliner See 10,266 100% 0% 0 0 12 1 0,562 2 0 0 24 1 0,622 2 54111 63087_Werbeliner See 10,300 100% 0% 0 0 19 1 0,562 2 0 0 14 1 0,622 2 54112 63088_Werbeliner See k.A.	54037	63013_Wallendorfer See	5,3	202	100%	0%	-20		0	0	1	0,402	3	-10	0	66	1	0,782	1
54108 63084_Werbeliner See 10, 454 100% 0% 0 0 17 1 0,585 2 0 0 21 1 0,604 2 54109 63085_Werbeliner See 10, 382 100% 0% 0 0 -21 1 0,394 3 0 0 -17 1 0,415 3 54110 63086_Werbeliner See 10, 266 100% 0% 0 0 12 1 0,562 2 0 0 24 1 0,622 2 54111 63087_Werbeliner See 10, 300 100% 0% 0 0 19 1 0,562 2 0 0 14 1 0,568 2 54112 63088_Werbeliner See 10, 94 100% 0% 0 0 19 1 0,596 2 0 0 37 1 0,686 2 53969 62952_Wisseler See k.A. 110% 0% 0 0 0 17 <td< td=""><td>54038</td><td>63014 Wallendorfer See</td><td></td><td>202</td><td>100%</td><td>0%</td><td>-20</td><td></td><td>0</td><td>0</td><td>1</td><td>0,402</td><td>3</td><td>-10</td><td>0</td><td>66</td><td>1</td><td>0,782</td><td>1</td></td<>	54038	63014 Wallendorfer See		202	100%	0%	-20		0	0	1	0,402	3	-10	0	66	1	0,782	1
54109 63085_Werbeliner See 10, 382 100% 0% 0 0 -21 1 0,394 3 0 0 -17 1 0,415 3 54110 63086_Werbeliner See 10, 266 100% 0% 0 0 12 1 0,562 2 0 0 24 1 0,622 2 54111 63087_Werbeliner See 10, 300 100% 0% 0 0 3 1 0,515 2 0 0 14 1 0,568 2 54112 63088_Werbeliner See 10, 94 100% 0% 0 0 19 1 0,596 2 0 0 37 1 0,686 2 53969 62952_Wisseler See k.A. 118 100% 0% -20 0 28 1 0,540 2 -10 0 28 1 0,540 2 -10 0 28 1 0,540 2 -10 0 28 1	54039	63015 Wallendorfer See	5,3	209	100%	0%	-20		0	21	1	0,503	3	-10	0	24	1	0,572	2
54109 63085_Werbeliner See 10, 382 100% 0% 0 0 -21 1 0,394 3 0 0 -17 1 0,415 3 54110 63086_Werbeliner See 10, 266 100% 0% 0 0 12 1 0,562 2 0 0 24 1 0,622 2 54111 63087_Werbeliner See 10, 300 100% 0% 0 0 3 1 0,515 2 0 0 14 1 0,568 2 54112 63088_Werbeliner See 10, 94 100% 0% 0 0 19 1 0,596 2 0 0 37 1 0,686 2 53969 62952_Wisseler See k.A. 118 100% 0% -20 0 28 1 0,540 2 -10 0 28 1 0,540 2 -10 0 28 1 0,540 2 -10 0 28 1	54108	63084 Werbeliner See	10,	454			0		0	17	1	0,585	2	0	0		1	0,604	2
54110 63086_Werbeliner See 10, 266 100% 0% 0 0 0 12 1 0,562 2 0 0 24 1 0,622 2 54111 63087_Werbeliner See 10, 300 100% 0% 0 0 0 3 1 0,515 2 0 0 14 1 0,568 2 54112 63088_Werbeliner See 10, 94 100% 0% 0 0 0 19 1 0,596 2 0 0 37 1 0,686 2 53970 62952_Wisseler See k.A. 204 100% 0% 0 -20 0 17 1 0,486 3 -10 0 17 1 0,540 2 -10 0 28 1 0,540 2 -10 0 28 1 0,540 2 -10 0 28 1 0,540 2 -10 0 28 1 0,540 2 -10 0 28 1 0,540 2 -10 0 2 1 0,540 2 -10 0	54109	63085 Werbeliner See	10,	382	100%	0%	0		0	-21	1	0,394	3	0			1	0,415	3
54111 63087_Werbeliner See 10, 300 100% 0% 0 0 0 3 1 0,515 2 0 0 0 14 1 0,568 2 54112 63088_Werbeliner See 10, 94 100% 0% 0 0 0 19 1 0,596 2 0 0 0 37 1 0,686 2 53969 62952_Wisseler See k.A. 204 100% 0% 0 20 0 17 1 0,486 3 -10 0 17 1 0,536 2 53970 62953_Wisseler See k.A. 118 100% 0% 0 20 0 28 1 0,540 2 -10 0 28 1 0,590 2 53971 62954_Wisseler See k.A. 171 100% 0% 0 0 0 0 -5 1 0,474 3 0 0 0 -5 1 0,474 3 53972 62955_Wisseler See k.A. 86 100% 0% 0 0 0 0 -3 1 0,483 3 0 0 0 -3 1 0,483 3 53973 62956_Wisseler See k.A. 218 100% 0% 0 20 0 16 1 0,480 3 -10 0 16 1 0,530 2 53904 62893_Wolfssee k.A. 411 100% 0% 0 -50 0 96 1 0,728 2 -20 0 35 1 0,544 2 53905 62894_Wolfssee k.A. 279 100% 0% -50 0 99 1 0,743 2 -20 0 9 1 0,445 3 53906 62895_Wolfssee k.A. 108 100% 0% -50 0 99 1 0,743 2 -20 0 13 1 0,463 3 53907 62896_Wolfssee k.A. 108 100% 0% -50 0 100 1 0,750 2 -20 0 13 1 0,493 3 53908 62897_Wolfssee k.A. 267 100% 0% -50 0 65 1 0,574 2 0 0 -6 1 0,409 3 53974 62958_Zülpicher See 5,0 7		_				0%	0		0	12	1		2	0	0		1		2
54112 63088_Werbeliner See 10, 94 100% 0% 0 0 0 19 1 0,596 2 0 0 37 1 0,686 2 53969 62952_Wisseler See k.A. 204 100% 0% -20 0 17 1 0,486 3 -10 0 17 1 0,596 2 0 28 1 0,590 2 2 53970 62953_Wisseler See k.A. 171 100% 0% 0 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 0 0 -5 1 0,48		_			100%	0%	0		0	3	1		2	0	0	14	1	0.568	2
53969 62952_Wisseler See k.A. 204 100% 0% -20 0 17 1 0,486 3 -10 0 17 1 0,536 2 53970 62953_Wisseler See k.A. 118 100% 0% -20 0 28 1 0,540 2 -10 0 28 1 0,590 2 53971 62954_Wisseler See k.A. 171 100% 0% 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 0 0 -5 1 0,483 3 0 0 -3 1 0,483 3 0 0 -3 1 0,483 3 -10 0 16 1 0,480 3 -10 0 16 1 0,480 3 -10 0 16 1 0,480 3 -10 0 16 1 0,483 3 -10 0 16 1 0,480	54112	63088 Werbeliner See	10,	94		0%	0		0	19	1	-	2	0	0	37	1		2
53970 62953_Wisseler See k.A. 118 100% 0% -20 0 28 1 0,540 2 -10 0 28 1 0,590 2 53971 62954_Wisseler See k.A. 171 100% 0% 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 53972 62955_Wisseler See k.A. 86 100% 0% 0 0 -3 1 0,483 3 0 0 -3 1 0,483 3 0 0 -3 1 0,483 3 0 0 -3 1 0,483 3 -10 0 16 1 0,483 3 -10 0 16 1 0,483 3 -10 0 16 1 0,483 3 -10 0 16 1 0,483 3 -10 0 16 1 0,483 3 -10 0 16 1 0,483		_	k.A.	204	100%	0%	-20		0	17			3	-10	0	17	1		2
53971 62954_Wisseler See k.A. 171 100% 0% 0 0 0 -5 1 0,474 3 0 0 -5 1 0,474 3 53972 62955_Wisseler See k.A. 86 100% 0% 0% 0 0 0 -3 1 0,483 3 0 0 -3 1 0,483 3 53973 62956_Wisseler See k.A. 218 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%			-												0		1		2
53972 62955_Wisseler See k.A. 86 100% 0% 0 0 0 -3 1 0,483 3 0 0 -3 1 0,483 3 53973 62956_Wisseler See k.A. 218 100% 0% -20 0 16 1 0,480 3 -10 0 16 1 0,530 2 53904 62893_Wolfssee k.A. 411 100% 0% -50 0 96 1 0,728 2 -20 0 35 1 0,574 2 53905 62894_Wolfssee k.A. 279 100% 0% -50 0 99 1 0,743 2 -20 0 9 1 0,445 3 53906 62895_Wolfssee k.A. 216 100% 0% -50 0 100 1 0,750 2 -20 0 13 1 0,463 3 53907 62896_Wolfssee k.A. 108 100% 0% -50 0 83 1 0,667 2 0 0 -1 1 0,495 3 53908 62897_Wolfssee k.A. 267 10		_					0				1						1		3
53973 62956_Wisseler See k.A. 218 100% 0% -20 0 16 1 0,480 3 -10 0 16 1 0,530 2 53904 62893_Wolfssee k.A. 411 100% 0% -50 0 96 1 0,728 2 -20 0 35 1 0,574 2 53905 62894_Wolfssee k.A. 279 100% 0% -50 0 99 1 0,743 2 -20 0 9 1 0,445 3 53906 62895_Wolfssee k.A. 216 100% 0% -50 0 100 1 0,750 2 -20 0 9 1 0,445 3 53907 62896_Wolfssee k.A. 108 100% 0% -50 0 83 1 0,667 2 0 0 -1 1 0,495 3 53908 62897_Wolfssee k.A. 267 100% 0% -50 0 100 1 0,750 2 -20 0 2 1 0,409 3 53974 62957_Zülpicher See 5,0 254							0				1	_			 		1	_	
53904 62893_Wolfssee k.A. 411 100% 0% -50 0 96 1 0,728 2 -20 0 35 1 0,574 2 53905 62894_Wolfssee k.A. 279 100% 0% -50 0 99 1 0,743 2 -20 0 9 1 0,445 3 53906 62895_Wolfssee k.A. 216 100% 0% -50 0 100 1 0,750 2 -20 0 13 1 0,463 3 53907 62896_Wolfssee k.A. 108 100% 0% -50 0 83 1 0,667 2 0 0 -1 1 0,495 3 53908 62897_Wolfssee k.A. 55 100% 0% -50 0 100 1 0,750 2 -20 0 2 1 0,409 3 53909 62898_Wolfssee k.A. 267 100% 0% -50 0 65 1 0,574 2 0 0 -6 1 0,470 3 53974 62957_Zülpicher See 5,0 746 100% 0							-20				1				_	-	1		2.
53905 62894_Wolfssee k.A. 279 100% 0% -50 0 99 1 0,743 2 -20 0 9 1 0,445 3 53906 62895_Wolfssee k.A. 216 100% 0% -50 0 100 1 0,750 2 -20 0 13 1 0,463 3 53907 62896_Wolfssee k.A. 108 100% 0% -50 0 83 1 0,667 2 0 0 -1 1 0,495 3 53908 62897_Wolfssee k.A. 267 100% 0% -50 0 65 1 0,574 2 -20 0 2 1 0,409 3 53974 62957_Zülpicher See 5,0 254 100% 0% -20 0 21 1 0,507 3 -10 0 31 1 0,607 2 53975 62958_Zülpicher See 5,0 746 100% 0% -20 0 17 1 0,484 3 -10 0 42 1 0,660 2 -10 0 42 1 0,610 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>2</td>		_							-								1		2
53906 62895_Wolfssee k.A. 216 100% 0% -50 0 100 1 0,750 2 -20 0 13 1 0,463 3 53907 62896_Wolfssee k.A. 108 100% 0% -50 0 83 1 0,667 2 0 0 -1 1 0,495 3 53908 62897_Wolfssee k.A. 267 100% 0% -50 0 100 1 0,750 2 -20 0 2 1 0,409 3 53909 62898_Wolfssee k.A. 267 100% 0% -50 0 65 1 0,574 2 0 0 -6 1 0,470 3 53974 62957_Zülpicher See 5,0 254 100% 0% -20 0 21 1 0,507 3 -10 0 31 1 0,607 2 53975 62958_Zülpicher See 5,0 346 100% 0% -20 0 42 1 0,610 2 -10 0 42 1 0,660 2																 	1		
53907 62896_Wolfssee k.A. 108 100% 0% -50 0 83 1 0,667 2 0 0 -1 1 0,495 3 53908 62897_Wolfssee k.A. 55 100% 0% -50 0 100 1 0,750 2 -20 0 2 1 0,409 3 53909 62898_Wolfssee k.A. 267 100% 0% -50 0 65 1 0,574 2 0 0 -6 1 0,470 3 53974 62957_Zülpicher See 5,0 254 100% 0% -20 0 21 1 0,507 3 -10 0 31 1 0,607 2 53975 62958_Zülpicher See 5,0 746 100% 0% -20 0 17 1 0,484 3 -10 0 19 1 0,547 2 53976 62959_Zülpicher See 5,0 346 100% 0% -20 0 </td <td></td> <td>_</td> <td>- 3</td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td>_</td>											_	- 3			-		1		_
53908 62897_Wolfssee k.A. 55 100% 0% -50 0 100 1 0,750 2 -20 0 2 1 0,409 3 53909 62898_Wolfssee k.A. 267 100% 0% -50 0 65 1 0,574 2 0 0 -6 1 0,470 3 53974 62957_Zülpicher See 5,0 254 100% 0% -20 0 21 1 0,507 3 -10 0 31 1 0,607 2 53976 62958_Zülpicher See 5,0 346 100% 0% -20 0 42 1 0,610 2 -10 0 42 1 0,660 2		_													-	-	1		
53909 62898_Wolfssee k.A. 267 100% 0% -50 0 65 1 0,574 2 0 0 -6 1 0,470 3 53974 62957_Zülpicher See 5,0 254 100% 0% -20 0 21 1 0,507 3 -10 0 31 1 0,607 2 53975 62958_Zülpicher See 5,0 746 100% 0% -20 0 17 1 0,484 3 -10 0 19 1 0,547 2 53976 62959_Zülpicher See 5,0 346 100% 0% -20 0 42 1 0,610 2 -10 0 42 1 0,660 2	-	_								l	_		_	-	-	-	1		
53974 62957_Zülpicher See 5,0 254 100% 0% -20 0 21 1 0,507 3 -10 0 31 1 0,607 2 53975 62958_Zülpicher See 5,0 746 100% 0% -20 0 17 1 0,484 3 -10 0 19 1 0,547 2 53976 62959_Zülpicher See 5,0 346 100% 0% -20 0 42 1 0,610 2 -10 0 42 1 0,660 2	-	_	-	_						L .	_						1		
53975 62958_Zülpicher See 5,0 746 100% 0% -20 0 17 1 0,484 3 -10 0 19 1 0,547 2 53976 62959_Zülpicher See 5,0 346 100% 0% -20 0 42 1 0,610 2 -10 0 42 1 0,660 2											1				_		1		
53976 62959_Zülpicher See 5,0 346 100% 0% -20 0 42 1 0,610 2 -10 0 42 1 0,660 2											1				_		1		_
											_						1		2
											_						1		2

Tabelle 77: Typ TKp: alte Bewertung der Teilkomponente Makrophyten nach SCHAUMBURG et al. (2008); neue Bewertung mit veränderten Einstufungen der Indikatorarten; M.V. = Makrophytenverödung

						alte I	Bewer	tung				neue	Bewe	ertung			
Messstelle	Befund	mittllere UMG	Gesamtquantität submerser Arten	Anteil eingestufter Arten	Anteil Nuphar lutea und Nymphaea alba	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologische Zustandsklasse	Korrekturfaktor UMG	Korrekturfaktor Massen	RI	gesichert	RI (korrigiert und umgerechnet)	Ökologische Zustandsklasse
54073	63049_Alfsee	1,7	93	100%	0%	0	0	-1	1	0,495	3	-50	0	-1	1	0,245	4
54074	63050_Alfsee	1,7	56	100%	0%	0	0	-48	1	0,259	4	-50	0	-48	1	0,009	4
54040	63016_Alte Elbe Sandkrug	0,8	7	100%	14%	0	0	-29	0	_	3	-50	0	-43	0	0,036	4
54041	63017_Alte Elbe Sandkrug	0,8		96%	1%	-50	0	40	1	0,451	3	-50	0	38	1	0,440	3
54042	63018_Alte Elbe Sandkrug	0,8	77	100%	1%	-50	0	25	1	0,373	3	-50	0	14	1	0,321	3
54043	63019_Alte Elbe Sandkrug	0,8	123	100%	22%	0	0	-7	1	0,467	3	-50	0	-13	1	0,185	4
53985	62961_Barleber See II	4,0	247	100%	0%	0	0	21	1	0,603	2	0	0	21	1	0,603	2
53986	62962_Barleber See II	4,0	199	100%	0%	0	0	0	1	_	3	0	0	0	1	0,500	3
53987	62963_Barleber See II	4,0	199	100%	0%	0	0	2	1	0,508	3	0	0	2	1	0,508	3
53988	62964_Barleber See II	4,0	401	100%	0%	0	0	31	1	0,655	2	0	0	31	1	0,655	2
53989	62965_Barleber See II	4,0	243	100%	0%	0	0	3	1	0,516	2	0	0	3	1	0,516	2
54077	63053_Gartower See	0,5	131	100%	49%	0	0	-2	1	0,492	3	-50	0	-22	1	0,139	4
54078	63054_Gartower See	0,5	141	100%	0%	0	-50	-6	1	0,222	4	-50	-50	-6	1	0,000	5
54059	63035_Kiessee Prettin	4,0	310	100%	0%	0	0	0	1	0,500	3	0	0	-3	1	0,487	3
54060	63036_Kiessee Prettin	4,0	217	100%	0%	0	0	-4	1	0,479	3	0	0	-5	1	0,477	3
54061	63037_Kiessee Prettin	4,0	279	100%	0%	0	0	-13	1	,	3	0	0	-15	1	0,423	3
54062	63038_Kiessee Prettin	4,0	236	100%	0%	0	0	-3	1		3	0	0	-6	1	0,468	3
54063	63039_Kiessee Prettin	4,0	155	100%	0%	0	0	1	1	0,503	3	0	0	0	1	0,500	3
54064	63040_Kiessee Prettin	4,0	210	100%	0%	0	0	-4	1	0,481	3	0	0	-8	1	0,462	3
54065	63041_Kiessee Prettin	4,0	172	100%	0%	0	0	-1	1	0,494	3	0	0	-1	1	0,494	3
54066	63042_Kiessee Prettin	4,0	86	100%	0%	0	0	-2	1	0,488	3	0	0	-12	1	0,442	3
53879	62880_Lohheidesee		905	100%	0%	0	0	46	1	0,731	2	0	0	46	1	0,731	1
53880	62881_Lohheidesee	4,0	935	100%	0%	0	0	47	1	0,737	2	0	0	47	1	0,737	1
53881	62882_Lohheidesee	4,0 4.0	646 640	100%	0% 0%	0	0	18 19	1	0,591 0,593	2	0	0	18	1	0,591 0,593	2
53882	62883_Lohheidesee	_		100% 100%	0%	-	0	_	1			-50	-	19	1		+
53945	62928_Neubauteich 4 Lohsa 62929 Neubauteich 4 Lohsa	1,4 1,4	53		0%	-50 -50	0	17 43	1	0,335 0,467	3	-50 -50	0	17 43	1	0,335 0,467	3
53946 53947	62930 Neubauteich 4 Lohsa	1,4	266 160	100% 100%	0%	-50 -50	0	35	1		3	-50 -50	0	35	1	0,467	3
53947	62931_Neubauteich 4 Lohsa	1,4	166	100%	1%	-50 -50	0	52	1	0,423	2	-50	0	52	1	0,423	2
53899	62888_Otto-Maigler-See	4,0	227	100%	0%	0	0	31	1	0,654	2	0	0	31	1	0,654	2
53900	62889_Otto-Maigler-See	4,0	528	100%	0%	0	0	59	1	0,795	1	0	0	59	1	0,795	1
53900	62890_Otto-Maigler-See	4,0	413	100%	0%	0	0	20	1	0,602	2	0	0	20	1	0,602	2
53901	62891_Otto-Maigler-See	4,0	236	100%	0%	0	0	-12	1		3	0	0	-16	1	0,422	3
53903	62892 Otto-Maigler-See	4,0	321	100%	0%	0	0	48	1		2	0	0	48	1	0,741	1
54009		4,0	239	100%	0%	0	0	-3	1	0,485	3	0	0	-3	1	0,485	3
54010	62986 Rattmannsdorfer Teich	4,0	215	100%	0%	0	0	20	1	0,602	2	0	0	20	1	0,600	2
54011	_	4,0	165	100%	0%	0	0	0	1	0,500	3	0	0	0	1	0,500	3
54012	_	4,0	111	100%	0%	0	0	0	1	_	3	0	0	0	1	0,500	3
54012	_	4,0	13	100%	0%	0	0	0	0		3	0	0	0	0	0,500	3
54085	63061_Seeburger See	1,5	261	100%	100%	0	0	0	0	_	5	-50	0	0	0	M.V.	5
54086	63062_Seeburger See	1,5	125	100%	100%		0	0	0		5	-50	0	0	0	M.V.	5
54089	63065_Thülsfelder Talsperre	0,7	126	100%	0%	-50	0	1	1		4	-50	0	1	1	M.V.	5
54099	63066_Thülsfelder Talsperre	0,7	64	100%	0%	0	0	0	1		3	-50 -50	0	0	1	M.V.	5
53929	62912 Unterbacher See	4,0	679	100%	0%	0	0	60	1	0,802	1	0	0	60	1	_	1
53929	62912_Unterbacher See	4,0	257	100%	0%	0	0	25	1	0,802	2	0	0	25	1	0,802	2
53930	62914 Unterbacher See	4,0	780	100%	0%	0	0	58	1	0,623	1	0	0	57	1	0,623	1
53968	62951 Unterbacher See		330	100%	0%	0	0	27	1	0,788	2	0	0	27	1	0,787	2
ンンプひる	02331_Onterbacher See	4,∪	000	10070	U /0	U	U	21	1	0,050	2	U	U	41	1	0,030	4

Abbildungsverzeichnis

Abbildung 1: Plausibilitatsangaben zu den Probestellen in %	11
Abbildung 2: Abweichungen unplausibler Befunde (zu gut – zu schlecht) in %	11
Abbildung 3: Gesicherte Bewertungen von Talsperren/Speichern in Abhängigkeit der Wasserstandsschwankungen (Probestellen in Prozent)	26
Abbildung 4: Plausibilitätsangaben zu den Probestellen in %	28
Abbildung 5: Optimalhabitat für die Diatomeenprobenahme: Mit ausgereiften Diatomeenassoziationen bewachsene Steine in ca. 30 cm Wassertiefe vor schütterem Röhricht. Großer Döllnsee (Brandenburg), Foto: H. Henker, Institut für angewandte Gewässerökologie GmbH, Seddiner See.	30
Abbildung 6: Epipsammische Diatomeenassoziationen wie hier im Bild fallen meistens durch unregelmäßig geformte Flecken mit tiefbrauner bis olivgrüner Färbung auf. Großer Döllnsee (Brandenburg), Foto: H. Henker, Institut für angewandet Gewässerökologie GmbH, Seddiner See.	31
Abbildung 7: Beprobungswerkzeug für den Aufwuchs auf Sand, feinem Kies, auch zur Beprobung innerhalb eines Stechrohres. Spitze der Spritze (oder des Schlauches) knapp über das Sediment halten und ansaugen. Bei grobem Sand muss evtl. die Öffnung vergrößert werden	32
Abbildung 8: Organogene Feindetritusmudde über Kalkmudde in einem Sedimentkern-Sammler nach Niederreiter (Fa. UWITEC, Mondsee, Austria). Foto: H. Henker, Institut für angewandte Gewässerökologie GmbH, Seddiner See.	33
Abbildung 9: Vorjährige, abgestorbene Typha-Halme im Seenlitoral mit ausgereift wirkenden Assoziationen von Aufwuchsdiatomeen. Tiefer- oder Grubensee bei Limsdorf (Brandenburg), Foto: J. Schönfelder	35
Abbildung 10: Kartierprotokoll für Makrophyten & Phytobenthos in Seen (Seite 1)	46
Abbildung 11: Kartierprotokoll für Makrophyten & Phytobenthos in Seen (Seite 2)	47
Abbildung 12: Fragebogen für die Probenahme in Talsperren	51

Tabellenverzeichnis

Tabelle 1: Ubersicht über die qualifizierten Neudaten: Probestellen/Seen je Bundesland (BL) und Makrophytentyp	10
Tabelle 2: Übersicht über die Angaben zur Plausibilität (Anzahl Probestellen/Untersuchungen)	10
Tabelle 3: Übersicht über die Abwertungsbedingungen des Referenzindex durch die UMG	18
Tabelle 4: Zuordnung der Indexwerte zu den Ökologischen Potentialklassen (ÖZ) - Typ AK(s)	20
Tabelle 5: Zuordnung der Indexwerte zu den Ökologischen Potentialklassen (ÖZ) - Typ MKp	21
Tabelle 6: Zuordnung der Indexwerte zu den Ökologischen Potentialklassen (ÖZ) - Typ Tkg10	22
Tabelle 7: Zuordnung der Indexwerte zu den Ökologischen Potentialklassen (ÖZ) - Typ Tkg13	23
Tabelle 8: Zuordnung der Indexwerte zu den Ökologischen Potentialklassen (ÖZ) - Typ Tkp	24
Tabelle 9: Übersicht über die Angaben zur Plausibilität (Anzahl Probestellen/Untersuchungen)	27
Tabelle 10: Empfohlene Transektzahlen in Abhängigkeit der Seeoberfläche (BB = Brandenburg, BW = Baden-Württemberg, BY = Bayern, MV = Mecklenburg-Vorpommern, Ni = Niedersachsen, SH = Schleswig-Holstein)	39
Tabelle 11: Pflanzenmengenskala nach KOHLER (1978)	44
Tabelle 12: Beschattungsskala nach WÖRLEIN (1992)	45
Tabelle 13: Ausschlussliste der bei der mikroskopischen Auswertung nicht zu berücksichtigenden pennaten Diatomeentaxa mit planktischer Lebensweise (V = Verbreitung, m = marin, b = Brackwasser, lfd-Nr. = laufende Nummer)	57
Tabelle 14: Gegenüberstellung der biozönotischen Seentypologie Makrophyten & Phytobenthos und der Seentypologie von MATHES et al.(2002) für natürliche Seewasserkörper	59
Tabelle 15: Gegenüberstellung der biozönotischen Seentypologie und der Seentypologie von MATHES et al.(2002) für künstliche und erheblich veränderte Seewasserkörper.sowie Seen des karbonatischen Mittelgebirges	60
Tabelle 16: Belastungen natürlicher und anthropogen bedingter Art, die ein Fehlen von Makrophyten bewirken können sowie deren Einstufung hinsichtlich einer Makrophytenverödung	64
Tabelle 17: Liste der Indikatoren. Meterangaben beziehen sich auf die Tiefenstufe, in der das Taxon gefunden wurde. Neuerungen sind durch Kleinbuchstaben und gelbe Markierungen gekennzeichnet.	66
Tabelle 18: Aerophile Taxa nach LANGE-BERTALOT (1996) und HILDEBRAND (1991)	85
Tabelle 19: Trophische Kenngrößen nach HOFMANN (1999) TI _{Süd}	87
Tabelle 20: Trophische Kenngrößen nach Schönfelder et al. (unveröffentlicht), modifiziert TI _{Nord}	92
Tabelle 21: Artengruppen A und C in den biozönotischen Seetypen der Alpen, Voralpen, des Mittelgebirges und des Norddeutschen Tieflandes	99
Tabelle 22: Anzahl der für eine gesicherte Berechnung des Referenzartenquotienten benötigte Taxa	113
Tabelle 23: Säurezeiger in natürlichen, künstlichen und erheblich veränderten Seen	114
Tabelle 24: Beschreibung des Säuregrades sowie Grad der Abwertung der DI _{Seen} .	114
Tabelle 25:Wert des TI _{Nord} der Klassengrenze "sehr gut" – "gut"	115
Tabelle 26: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Seen der Region Alpen und Alpenvorland	118
Tabelle 27: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Seen der Region Alpen und Alpenvorland	118

Tabelle 28: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Diatomeen: Seen der Region Alpen und Alpenvorland	119
Tabelle 29: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Silikatisch geprägte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp MTSs bzw, DSs)	120
Tabelle 30: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Karbonatisch geprägte, geschichtete Seen des Mittelgebirges sowie Altrheine des Oberrheinischen Tieflandes in der Gewässerkategorie "natürlich"	120
Tabelle 31: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Karbonatisch geprägte, polymiktische Seen des Mittelgebirges sowie Altrheine des Oberrheinischen Tieflandes in der Gewässerkategorie "natürlich"	120
Tabelle 32: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesicherten Modul Makrophyten: Silikatisch geprägte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp DSs)	121
Tabelle 33: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, geschichtete Seen des Mittelgebirges sowie Altrheine des Oberrheinischen Tieflandes in der Gewässerkategorie "natürlich"	121
Tabelle 34: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, polymiktische Seen des Mittelgebirges sowie des Altrheine Oberrheinischen Tieflandes in der Gewässerkategorie "natürlich"	121
Tabelle 35: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesicherten Modul Diatomeen: Silikatisch geprägte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp MTSs)	122
Tabelle 36: Indexgrenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, geschichtete und polymiktische Seen des Mittelgebirges sowie Altrheine des Oberrheinischen Tieflandes der Gewässerkategorie "natürlich"	122
Tabelle 37: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Geschichtete Seen des Norddeutschen Tieflandes, Typ 10 nach Mathes et al. (2002)	123
Tabelle 38: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Geschichtete Seen des Norddeutschen Tieflandes, Typ 13 nach MATHES et al. (2002)	123
Tabelle 39: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 11 nach MATHES et al.	123
Tabelle 40: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 12 nach MATHES et al.	124
Tabelle 41: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 14 nach MATHES et al	124
Tabelle 42: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Geschichtete Seen des Norddeutschen Tieflandes, Typ 10 nach MATHES et al. (2002)	125
Tabelle 43: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Geschichtete Seen des Norddeutschen Tieflandes, Typ 13 nach MATHES et al. (2002)	
Tabelle 44: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 11 nach MATHES et al. (2002)	125
Tabelle 45: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ 12 nach MATHES et al. (2002)	126
Tabelle 46: Indexgrenzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Makrophyten: Ungeschichtete Seen des Norddeutschen Tieflandes, Typ	126

	enzen für die Einteilung der Okologischen Zustandsklassen bei ungesichertem Modul Diatomeen; Geschichtete Seen des Norddeutschen Tieflandes, Typ 101	27
	enzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Diatomeen; Geschichtete Seen des Norddeutschen Tieflandes, Typ 131	27
	enzen für die Einteilung der Ökologischen Zustandsklassen bei ungesichertem Modul Diatomeen: Ungeschichtete Seen des Norddeutschen Tieflandes, Typen 11, 12 und 141	27
	enzen für die Einteilung der Ökologischen Potentialklassen: künstliche und erheblich veränderte Seen der Region Alpen und Alpenvorland1	28
	enzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: künstliche und erheblich veränderte Seen der Region Alpen und Alpenvorland1	28
	enzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Diatomeen: künstliche und erheblich veränderte Seen der Region Alpen und Alpenvorland1	29
	enzen für die Einteilung der Ökologischen Potentialklassen: Silikatisch geprägte künstliche und erheblich veränderte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp MTSs bzw, DSs)	30
	enzen für die Einteilung der Ökologischen Potentialklassen: Karbonatisch geprägte, geschichtete künstliche und erheblich veränderte Seen des Mittelgebirges sowie Seen des Oberrheinischen Tieflandes	30
	enzen für die Einteilung der Ökologischen Potentialklassen: Karbonatisch geprägte, polymiktische künstliche und erheblich veränderte Seen des Mittelgebirges sowie des Seen Oberrheinischen Tieflandes	30
	enzen für die Einteilung der Ökologischen Potentialklassen bei ungesicherten Modul Makrophyten: Silikatisch geprägte künstliche und erheblich veränderte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp DSs)1	31
	enzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, geschichtete künstliche und erheblich veränderte Seen des Mittelgebirges sowie des Seen Oberrheinischen Tieflandes	31
	enzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, polymiktische künstliche und erheblich veränderte Seen des Mittelgebirges sowie Seendes Oberrheinischen Tieflandes	31
-	enzen für die Einteilung der Ökologischen Potentialklassen bei ungesicherten Modul Diatomeen: Silikatisch geprägte künstliche und erheblich veränderte Seen des Mittelgebirges sowie für versauerte Seen (Untertyp MTSs)	32
	enzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Karbonatisch geprägte, geschichtete und polymiktische künstliche und erheblich veränderte Seen des Mittelgebirges sowie Seen des Oberrheinischen Tieflandes	32
	enzen für die Einteilung der Ökologischen Potentialklassen: Geschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 10 nach MATHES et al. (2002)	.33
	enzen für die Einteilung der Ökologischen Potentialklassen: Geschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 13 nach MATHES et al. (2002)	33
	enzen für die Einteilung der Ökologischen Potentialklassen: Ungeschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 11 und 12 nach MATHES et al	33

Tabelle 64: Index	grenzen für die Einteilung der Ökologischen Potentialklassen: Ungeschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 14 MATHES et al.	134
Tabelle 65: Index	grenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Geschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 10 nach MATHES et al. (2002)	135
Tabelle 66: Index	grenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Geschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 13 nach MATHES et al. (2002)	135
Tabelle 67: Index	grenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Ungeschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes, Typ 11, 12 und 14 nach MATHES et al. (2002)	135
Tabelle 68: Index	grenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Diatomeen; Geschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes	136
Tabelle 69: Index	grenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Diatomeen: Ungeschichtete künstliche und erheblich veränderte Seen des Norddeutschen Tieflandes	136
Tabelle 70: Index	grenzen für die Einteilung der Ökologischen Potentialklassen: Saure und versauerte künstliche und erheblich veränderte Seen	137
Tabelle 71: Index	grenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Makrophyten: Saure und versauerte künstliche und erheblich veränderte Seen	137
Tabelle 72: Index	grenzen für die Einteilung der Ökologischen Potentialklassen bei ungesichertem Modul Diatomeen; Saure und versauerte künstliche und erheblich veränderte Seen	138
Tabelle 73: Typ A	aK(s): alte Bewertung der Teilkomponente Makrophyten nach SCHAUMBURG et al. (2008); neue Bewertung mit veränderten Einstufungen der Indikatorarten; n.a. = Kriterium der UMG bei Gewässern mit schwankenden Wasserständen nicht angewendet	149
Tabelle 74: Typ M	MKp: alte Bewertung der Teilkomponente Makrophyten nach SCHAUMBURG et al. (2008); neue Bewertung mit veränderten Einstufungen der Indikatorarten; n.a. = Kriterium der UMG bei Gewässern mit schwankenden Wasserständen nicht angewendet	150
Tabelle 75: Typ T	Kg10: alte Bewertung der Teilkomponente Makrophyten nach SCHAUMBURG et al. (2008); neue Bewertung mit veränderten Einstufungen der Indikatorarten; n.a. = Kriterium der UMG bei Gewässern mit schwankenden Wasserständen nicht angewendet; n.b. = Stelle nicht bewertbar z.B. wegen noch laufenden Auskiesung; M.V. = Makrophytenverödung	150
Tabelle 76: Typ T	Kg13: alte Bewertung der Teilkomponente Makrophyten nach SCHAUMBURG et al. (2008); neue Bewertung mit veränderten Einstufungen der Indikatorarten; k.A. keine Angabe; Goitzschesee aufgrund des geringen Alters in neuere Bewertung ungesichert	152
Tabelle 77: Typ T	Kp: alte Bewertung der Teilkomponente Makrophyten nach SCHAUMBURG et al. (2008); neue Bewertung mit veränderten Einstufungen der Indikatorarten; M.V. = Makrophytenverödung	155