Erfassung von persistenten organischen Schadstoffen im bayerischen Alpenraum
Projekt: POPALP

Endbericht – Teil Boden, Nadeln, Deposition, Luft

Helmholtz Zentrum München PSP Element: S-776360-5051-002

M. Kirchner, G. Jakobi, W. Levy, G. Kocsis, B. Henkelmann, G. Pfister, S. Bernhöft, N. Fischer, K.-W. Schramm in Zusammenarbeit mit E. Hangen und W. Körner (Bayerisches Landesamt für Umwelt) und H. Kronawitter (Wasserwirtschaftsämter Traunstein)

Helmholtz Zentrum München GmbH
Institut für Ökologische Chemie
Ingolstädter Landstraße 1
D-85764 Neuherberg

Im Auftrag des Bayerischen Landesamts für Umwelt

05.10.2011
INHALT

1. ZUSAMMENFASSUNG UND AUSBlick ... 4

2. EINLEITUNG ... 7

3. ZIELSETZUNG ... 8

4. UNTERSUCHUNGSRAUM .. 9

5. MATERIAL UND METHODEN ... 10

5.1. Substanzgruppen .. 10

5.1.1. Polychlorierte Dibenzodioxine und -furane (PCDD/F) 10

5.1.2. Polychlorierte Biphenyle (PCB) .. 10

5.1.3. Polyzyklische aromatische Kohlenwasserstoffe (PAH) 12

5.1.4. Organochlorpestizide (OCP) ... 14

5.1.5. Polybromierte Diphenylether (PBDE) .. 18

5.2. Probenahme .. 19

5.2.1. Immissionsmessungen mit High and Low Volume Sampeln.......... 19

5.2.2. Trajektorienvorhersage ... 20

5.2.3. Immissionsmessungen mit Passivsammlern (SPMDs) im NP BG 21

5.2.4. Depositionsmessungen ... 22

5.2.5. Bodenuntersuchung im NP BG ... 23

5.2.6. Standort- und Bodendaten ... 24

5.2.7. Untersuchung der Fichtenadeln im NP BG 26

5.2.8. Meteorologische Messungen im NP BG 28

5.3. Analytik .. 28

5.3.1. PCDD/F- und PCB-Analytik des LfU .. 29

5.3.2. PBDE-Analytik des LfU ... 31

5.3.3. Analytik des IÖC-HMGU .. 34

5.3.4. Mikro-EROD-Bioassay-Bestimmung am IÖC-HMGU 35

6. ERGEBNISSE UND DISKUSSION .. 37

6.1. Immissionsmessungen an der UFS .. 37

6.1.1. PCDD/F .. 37

6.1.2. PCB ... 42

6.1.3. PAH ... 42

6.1.4. OCP ... 45

6.2. Depositionsmessungen an der UFS .. 48

6.2.1. PCDD/F .. 49

6.2.2. PCB ... 52

6.2.3. PAH ... 54

6.2.4. OCP ... 56

6.2.5. PBDE ... 61

6.3. Vertikalgradienten der meteorologischen Parameter im NP BG 63

6.3.1. Vertikalprofil der Lufttemperatur ... 64

6.3.2. Vergleich der Thermo/Hygrobutton mit meteorologischen Stationen ... 67

6.3.3. Messung der Innentemperaturen in den SPMD-Hütten 68
1. Zusammenfassung und Ausblick

Persistente organische Schadstoffe (POPs) sind als globales Problem für Umwelt und Mensch identifiziert. Diese überwiegend anthropogenen Verbindungen wurden und werden zum Teil noch aus einer Vielzahl stationärer und mobiler, punktueller wie auch diffuser Quellen emittiert. Aufgrund ihrer physikalischen Eigenschaften, ihrer extrem langen Lebensdauer und ihrer Bioakkumulationsfähigkeit haben sie sich mittlerweile global und ubiquitär in allen Umweltmedien, bis in die menschliche Nahrungskette verteilt.

Da das INTERREG-Programm (Alpine Space) eine Fortführung des Projektes MONARPOP auf Grund der Rahmenbedingungen über 2007 hinaus nicht vorsah, wurde angesichts der zentralen Bedeutung einer kontinuierlichen Erfassung der POPs die Betreuung der Messeinrichtungen an der Umweltforschungsstation Schneefernerhaus (UFS) vom HMGU und in enger Abstimmung mit dem österreichischen Umweltbundesamt und dem Schweizerischen Bundesamt für Umwelt auch am Sonnblick (A) und am Weißfluhjoch (CH) ab Januar 2008 jeweils mit Eigenmitteln fortgesetzt.

Die wichtigsten Ergebnisse des Berichts lassen sich wie folgt zusammenfassen:

Die typischen Immissionsmuster, die zeitlichen Trends und die jahreszeitlichen Variationen der einzelnen Substanzen oder Stoffgruppen waren für die Konzentration in der Luft und für die Deposition nicht immer einheitlich. Als Ursache dafür kommen offensichtlich auch unterschiedliche
Emissionsmuster, also jahreszeitlich variierende Emissionen in den definierten Herkunftsgebieten in Frage.

Die Immissionskonzentrationen der Dioxine, Furane und PCB zeigten für fast alle Herkunftsgebiete einen abnehmenden Trend, nur für Nordost (NE) wird eine Zunahme der PCDD/F-Konzentrationen beobachtet; auch für PCB-Werte wurden für Luftmassen aus NE die höchsten Werte gemessen. Das Konzentrationsniveau lag allerdings meist im Bereich für „entlegene“ Stationen. Bei den PAH dagegen wurde ein geringer bis deutlicher Trend zu höheren Immissionen für alle Herkunftsgebiete, für NE allerdings sogar um Faktor 3, gefunden. Für die meisten OCP wurden unabhängig vom Herkunftsgebiet eine Abnahme, nur für HCB für NE und Nordwest (NW) eine Zunahme der mittleren Immissionskonzentrationen beobachtet. In MONARPOP konnte festgestellt werden, dass der nördliche Alpenrand (insbes. UFS) die höchsten Immissionskonzentrationen aufweist.

Die Ergebnisse aus MONARPOP und POPALP zeigen einen umfassenden Überblick über die derzeitige Belastungssituation insbesondere der Nordalpen in Bezug auf persistente organische
Schadstoffe. Es bedarf weiterer intensiver Datenanalysen und Interpretationsansätze, um Signale singulärer Ereignisse (Vulkanausbrüche, Waldbrennere etc.) zu identifizieren, die Ursachen jahreszeitlicher Variationen sowie stationsspezifischer und interstationärer Unterschiede näher untersuchen zu können. Hierbei könnten Messergebnisse anderer Schadstoffe aus anderen Projekten evtl. als Indikator herangezogen und weitere meteorologische Modelle und Klimadaten mit einbezogen werden.

2. Einleitung

POPs sind ein globales Umweltproblem. Sie sind schwer abbaubare Substanzen mit Halbwertszeiten bis zu 10 Jahren und länger. Sie können als Gase oder angelagert an Staub oder Aerosolen in der Atmosphäre über weite Strecken transportiert sowie mehrfach deponiert und revolatilisiert werden (Grashopper effect) und haben sich mittlerweile ubiquitär in allen Umweltmedien verteilt. POPs werden bevorzugt in kälteren Regionen wie in den Polgebieten und im Gebirge deponiert (cold trap effect). Aufgrund ihrer lipophilen Eigenschaften können sie sich in unterschiedlichen Ökosystemen, in Nutzpflanzen und Tieren anreichern, in die menschliche Nahrungskette gelangen und schließlich auch in menschlichen Organen gespeichert und angereichert werden.

Die Alpen stellen für meteorologische Transportprozesse ein physikalisches Strömungshindernis dar, können durch die mit der Höhe abnehmenden Temperaturen für POPs als Kondensationsfalle wirken und durch die nach oben zunehmenden Niederschlagsmengen zu verstärkter Deposition für Stoffe aus der Atmosphäre führen. Auch alpine Waldökosysteme stellen aufgrund ihrer großen effektiven Oberfläche (POPs werden bevorzugt in den fettartigen äußeren Wachsschichten der Nadeln und Blätter eingelagert) und des geringen Biomasseentzugs eine effektive Senke dar.

Im Rahmen von Klimaveränderungen, mit steigenden Temperaturen und Veränderung der Niederschlagsmengen, sind ein verändertes Depositions- und Revolatilisierungsverhalten von persistenten organischen Schadstoffen denkbar, bisher aber nur durch wenige Studien belegt (Lamon et al., 2009).

3. Zielsetzung

4. Untersuchungsraum

Die Auswahl der Messstandorte für das Projekt POPALP erfolgte auf Basis der Ergebnisse des Projektes MONARPOP. Damit konnten spezielle Untersuchungsergebnisse zum einen inhaltlich zielgerichtet verdichtet und zum anderen kontinuierliche Messreihen generiert werden, die Grundlage einer besseren Interpretierbarkeit der Untersuchungsergebnisse sind. Der Untersuchungsraum ist der bayerische Alpenraum (Abbildung 1).

Der Messstandort Umweltforschungsstation Schneefernerhaus (UFS, 2650m) an der Zugspitze wurde im Rahmen von POPALP unverändert weiterbetrieben (Abbildung 4). Auch die Messungen an den anderen beiden hochalpinen Standorte, am Rauriser Sonnblick (3106m) in Österreich und am Weißfluhjoch (2663m) in der Schweiz, wurden durch das Umweltbundesamt in Wien (Ansprechpartner Herr Moche) bzw. die Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft (WSL) in Zürich (Ansprechpartner Herr Dr. Schaub) fortgeführt. Diese drei Standorte sind durch ihre Lage und ihre messtechnische Infrastruktur in exzellenter Weise für die Erfassung und Interpretation des Schadstoffferntransportes geeignet. Im vorliegenden Bericht wird allerdings nur über die Ergebnisse der POPALP-Standorte (d.h. in Bayern) berichtet.

Abbildung 1: Untersuchungsgebiete
5. Material und Methoden

5.1. Substanzgruppen

5.1.1. Polychlorierte Dibenzodioxine und –furane (PCDD/F)

Die Gruppe der Dioxine und Furane besteht aus insgesamt 75 polychlorierten Dibenzo-para-Dioxinen (PCDD) und 135 polychlorierten Dibenzofuranen (PCDF). Deren Grundstruktur ist in Abbildung 2 dargestellt.

Abbildung 2: Molekularstruktur der Dioxine (links) und der Furane (rechts)

Dioxine und Furane entstehen als unvermeidliche Nebenprodukte bei Verbrennungsprozessen organischer Verbindungen in Anwesenheit chlorhaltiger Substanzen. Emissionsquellen, bei denen Dioxine und Furane freigesetzt werden können, sind verschiedene industrielle Prozesse (Bleichen von Papier, metallurgische Prozesse, Herstellung von Pflanzenschutzmitteln), die Müllverbrennung und Zigarettenrauch. Sie können aber auch bei Waldbränden oder Vulkanausbrüchen entstehen. Sie werden hauptsächlich gebunden an Staubpartikeln oder Aerosolen in der Atmosphäre verteilt.

Die chemischen Eigenschaften der Dioxine und Furane, wie deren Löslichkeit, deren Flüchtigkeit, die Abbaubarkeit oder auch deren Toxizität werden durch ihr jeweiliges Chlorsubstitutionsmuster bestimmt. Das giftigste Kongener ist das 2,3,7,8-Tetrachlordibenzodioxin (2,3,7,8-TCDD), welches auch als „Sevesogift, Sevesodioxin“ bekannt wurde. Zur Bewertung der Giftigkeit von Dioxingemischen wurde die Toxizität der einzelnen Kongenere auf dieses 2,3,7,8-TCDD bezogen und als Toxizitätsäquivalent bezeichnet. Dampfdruck und Wasserlöslichkeit nehmen mit zunehmendem Chlorierungsgrad ab. Bei einer sehr geringen Wasserlöslichkeit (z.B. TCDD: 0,02 µg/l; OCDD: 0,36 ng/l) ist die Mobilität im Boden sehr gering. Wie alle POPs sind die PCDD/F lipophil und werden in organischem Material (Pflanzen) sowie tierischem und menschlichem Fettgewebe akkumuliert.

5.1.2. Polychlorierte Biphenyle (PCB)

Polychlorierte Biphenyle (PCB) sind eine Gruppe von insgesamt 209 möglichen Verbindungen (Derivate) des Biphenyls (Abbildung 3). Bei diesen sogenannten Kongeneren sind zwischen 1 und 10 Wasserstoffatome an unterschiedlichen Positionen (2 - 6 und 2’ – 6’) durch Chlor ersetzt.
Die Molekulargewichte der Kongenere liegen zwischen 188 und 498 g/mol mit einem Chlorierungsgrad zwischen 18% bis 71%. Die Wasserlöslichkeit der PCB ist prinzipiell sehr gering und nimmt mit steigendem Chlorierungsgrad noch ab, ebenso der Dampfdruck.

PCBs sind chemisch stabil, hitzebeständig, nicht brennbar, plastifizierend, elektrisch nicht leitend und billig. Diesen Eigenschaften verdankten sie ihren weltweiten industriellen Einsatz, als Isolations- und Kühlmittel in elektrischen Bauteilen und Geräten (Transformatoren, elektrischen Kondensatoren, Starter für Leuchtstofflampen) und als Hydrauliköl vor allem im Bergbau. Sie dienten als Weichmacher und Flammenschutzmittel in Anstrichstoffen (Wilhelmi-Deckenplatten), in Dichtungsmassen und Kunststoffen (z. B. Kabelummantelungen), als Schmiermittel und vieles mehr.

Die fast zu 100% anthropogenen PCB sind lipophil, schwer abbaubar (persistent) mit Halbwertszeiten zwischen mehreren Tagen und einigen Jahren und können, sowohl gasförmig als auch an Partikel gebunden, über weite Strecken, bis hin zu den Polen, transportiert werden. Sie können mehrfach deponiert und reemittiert werden, besonders im Sommer bei höheren Temperaturen. Sie haben sich mittlerweile ubiquitär in allen Umweltmedien verteilt. Besonders die höher chlorierten Kongenere akkumulieren in organischen Materialien, wie humusreichen Waldböden, aber auch in menschlichen und tierischen Fettgeweben. So wurden PCB in der Muttermilch von Inuit-Frauen, oder auch in arktischen Säugern wie Robben oder Eisbären sowie Fischen nachgewiesen.

Eine unter toxikologischen Gesichtspunkten besondere Gruppe sind die so genannten „dioxinähnlichen PCB“, welche sich molekularbiologisch ähnlich dem Dioxin 2,3,7,8-TCDD (Sevesodioxin) verhalten. Deshalb wurden von der WHO für diese 12 PCB Toxizitätsäquivalentfaktoren vorgegeben, welche deren Giftigkeit mit dem 2,3,7,8-TCDD vergleichen. Durch Multiplikation werden die analysierten PCB-Gehalte in Dioxinäquivalente umgerechnet und deren Addition ergibt dann die Toxizitätsäquivalente, WHO-TEQ.
Die quantitativ wichtigsten nicht dioxinähnlichen PCB-Kongenere werden summarisch auch als Indikator-, Marker- oder (früher) Ballschmiter-PCB bezeichnet.

Tabelle 1: Einteilung der untersuchten PCB, Anzahl der substituierten Chlor-Atome und Toxizitätsäquivalentfaktoren

<table>
<thead>
<tr>
<th>IUPAC-Nr.</th>
<th>- dioxinähnliche PCB</th>
<th>Anzahl Cl</th>
<th>WHO-TEF 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>#77</td>
<td>- non-ortho PCB</td>
<td>4</td>
<td>0,0001</td>
</tr>
<tr>
<td>#81</td>
<td>- coplanare PCB</td>
<td>4</td>
<td>0,0001</td>
</tr>
<tr>
<td>#126</td>
<td>- mono-ortho PCB</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>#169</td>
<td></td>
<td>6</td>
<td>0,01</td>
</tr>
<tr>
<td>#105</td>
<td></td>
<td>5</td>
<td>0,0001</td>
</tr>
<tr>
<td>#114</td>
<td></td>
<td>5</td>
<td>0,0005</td>
</tr>
<tr>
<td>#118</td>
<td></td>
<td>5</td>
<td>0,0001</td>
</tr>
<tr>
<td>#123</td>
<td></td>
<td>5</td>
<td>0,0001</td>
</tr>
<tr>
<td>#156</td>
<td></td>
<td>6</td>
<td>0,0005</td>
</tr>
<tr>
<td>#157</td>
<td></td>
<td>6</td>
<td>0,0005</td>
</tr>
<tr>
<td>#167</td>
<td></td>
<td>6</td>
<td>0,00001</td>
</tr>
<tr>
<td>#189</td>
<td></td>
<td>7</td>
<td>0,0001</td>
</tr>
</tbody>
</table>

- Indikator PCB
- Ballschmiter PCB

Tabelle 2: Untersuchte EPA-PAH, verwendete Abkürzung, Molekularstruktur, Anzahl der anellierten Ringe (R) und Molekulargewicht (MG)

<table>
<thead>
<tr>
<th>EPA-PAH</th>
<th>Abkürzung</th>
<th>Strukturformel</th>
<th>R</th>
<th>MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalin</td>
<td>NAP</td>
<td></td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Acenaphthylen</td>
<td>ACY</td>
<td></td>
<td>3</td>
<td>152</td>
</tr>
<tr>
<td>Acenaphthen</td>
<td>ACE</td>
<td></td>
<td>3</td>
<td>154</td>
</tr>
<tr>
<td>Fluoren</td>
<td>FLU</td>
<td></td>
<td>3</td>
<td>166</td>
</tr>
<tr>
<td>Phenanthren</td>
<td>PHE</td>
<td></td>
<td>3</td>
<td>178</td>
</tr>
</tbody>
</table>

5.1.3. Polyzyklische aromatische Kohlenwasserstoffe (PAH)

Die Stoffgruppe der polyzyklischen aromatischen Kohlenwasserstoffe umfasst Verbindungen, deren Grundgerüst aus mindestens zwei miteinander verbundenen (kondensierten, anellierten) aromatischen Ringsystemen besteht. Der einfachste PAH, Naphthalin, besteht aus zwei kondensierten Benzolringen. Insgesamt existieren mehr als 300 bekannte PAH. In POPALP wurden die 16 Einzelsubstanzen, die von der amerikanischen Umweltbehörde EPA auf die Liste der „prioritären Umweltschadstoffe“ gesetzt wurden, analysiert. In dieser Liste sind auch die von der WHO und der TVO (Deutsche Trinkwasserverordnung) vorgeschlagenen PAH enthalten (Tabelle 2).
Anthracen (ANT)

<table>
<thead>
<tr>
<th>Anthracen</th>
<th>ANT</th>
<th>3</th>
<th>178</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoranthren</td>
<td>FLA</td>
<td>4</td>
<td>202</td>
</tr>
<tr>
<td>Pyren</td>
<td>PYR</td>
<td>4</td>
<td>202</td>
</tr>
<tr>
<td>Benzo(a)anthracen</td>
<td>BaA</td>
<td>4</td>
<td>228</td>
</tr>
<tr>
<td>Chrysanthren</td>
<td>CHR</td>
<td>4</td>
<td>228</td>
</tr>
<tr>
<td>Benzo(b)fluoranthen</td>
<td>BbF</td>
<td>5</td>
<td>252</td>
</tr>
<tr>
<td>Benzo(k)fluoranthen</td>
<td>BkF</td>
<td>5</td>
<td>252</td>
</tr>
<tr>
<td>Benzo(a)pyren</td>
<td>BaP</td>
<td>5</td>
<td>252</td>
</tr>
<tr>
<td>Indeno(1,2,3-c,d)pyren</td>
<td>IcdP</td>
<td>5</td>
<td>276</td>
</tr>
<tr>
<td>Benzo(g,h,i)perle</td>
<td>BghiP</td>
<td>6</td>
<td>276</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracen</td>
<td>DahA</td>
<td>5</td>
<td>278</td>
</tr>
</tbody>
</table>

* Schwere PAH (HW) **

* PAH Summenparameter (Grenzwert 0.0001 mg/l) lt. Trinkwasserverordnung Teil 2 (TVO)

** Grenzwert 0.00001 mg/l lt. Trinkwasserverordnung Teil 2 (TVO)

Die PAH sind nur gering wasserlöslich, und mit der Anzahl der kondensierten Ringe nimmt deren Wasserlöslichkeit ab (NAP 35 mg/l – BkF 0.55 µg/l). Analog nimmt auch deren Flüchtigkeit (10⁻² bis 10⁻⁸ Pa) ab, nur Naphthalin ist mit einem Dampfdruck von 11.3 Pa (Geruch nach Mottenkugeln) relativ flüchtig. Der n-Oktanol/Wasser – Verteilungskoeffizient, welcher als Maß für die Verteilung der PAH zwischen wässriger Phase und organischen Bestandteilen verwendet wird, weist die PAH prinzipiell als stark lipophile Substanzen aus und steigt ebenfalls mit der Anzahl der kondensierten Ringe an.

Wenige Verbindungen, wie Anthracen und Pyren werden als Basisprodukte für die chemische Industrie synthetisiert. Viele PAH kommen natürlich, in fossilen Brennstoffen, Rohöl und Steinkohlenteer, Phenanthren auch in einem Mineral (Ravatit) vor. Die meisten polyzyklischen aromatischen Kohlenwasserstoffe aber entstehen als Nebenprodukte unvollständiger Verbrennung von organischen Materialien, so bei Holz und anderen fossilen Rohstoffen, oder wie das bekannteste PAH Benzo(a)pyren (BaP), beim Kfz-Verkehr, beim Rauchen oder auch beim Grillen von Fleisch.

Die durch Verbrennungsvorgänge in die Luft emittierten PAH verbleiben in geringerem Maße in der Gasephase, werden aber überwiegend an Rußpartikeln gebunden. Sie deponieren in Wasser, Böden und Pflanzen und können sowohl inhalativ (normale Atemluft, Konsum von Tabak) oder oral durch Nahrungsaufnahme in den menschlichen oder tierischen Organismus gelangen.
Die Toxizität allgemein, und die Mutagenität und Kanzerogenität der aus 4 und mehr Ringen bestehenden PAH nehmen mit zunehmender Molekulgröße zu. Diese PAH können Lungenkarzinome, Tumore an der Harnblase und Hautkrebs verursachen. So wird Benzo(a)pyren bei Schornsteinfeignern als Ursache für deren Hautkrebshäufigkeit verantwortlich gemacht. Signifikante Einflüsse auf andere Krebsarten oder die Förderung der kanzerogenen Wirkung anderer Substanzen werden diskutiert. Sie gelten außerdem als fortpflanzungsschädlich und teratogen.

Die Quellenanalyse stützt sich u.a. auf Unterschiede in den relativen Gehalten der einzelnen PAH-Vertreter. Ratios aus den Isomeren IcdP und BghiP werden so als Indikatoren zur Quellenanalyse verwendet; IcdP/(IcdP + BghiP) wird zur Abgrenzung verschiedener Verbrennungsquellen (Holz, Kohle, Mineralöl) herangezogen. Entsprechend dazu lässt sich auch das Verhältnis aus FLA und (FLA+PYR) berechnen. In beiden Fällen deuten Verhältnisse von >0.5 überwiegend auf Holz- und Kohleverbrennung, von <0.5 auf Verbrennung von flüssigen Brennstoffen hin (Yunker et al., 2002).

Für vorbelastete Böden in den Niederlanden wurden Critical Load-Werte von 7 bis 21 g/ha*a errechnet. Es sind allerdings Werte, die derzeit in den Wäldern nicht erreicht werden (de Vries et al., 1988).

In Island, in dem fossile Brennstoffe durch die Nutzung von natürlichen Heißwasserquellen für die Energieerzeugung kaum herangezogen werden, ließen sich in Bodenproben kaum PAH nachweisen. Die Konzentration von PAH in der Luft ist in der Regel von der Bevölkerungsdichte und dem Grad der Industrialisierung abhängig; sie ist im Winter als Folge der Heizungsemisionen höher als im Sommer. Generell sind die PAH-Konzentrationen in der Luft der Bundesrepublik Deutschland fünf- bis zehnmal höher als in den USA, was auf die größere Zahl von häuslichen Kohleöfen und vermehrte von Kachelöfen zurückzuführen ist. Für BaP wurde in der 4. Tochterrichtlinie 2004/107/EG ein Immissionsgrenzwert von 1 ng/m3 im Jahresmittel festgelegt (Gas oder Partikel).

5.1.4. Organochlorpestizide (OCP)

Die Gruppe der Organochlorpestizide umfasst Organochlorverbindungen, die als Schädlingsbekämpfungsmittel in Deutschland eingesetzt wurden und teilweise in anderen Ländern noch verwendet werden. Diese Verbindungen sind äußerst persistente und reichern sich vor allem im Fettgewebe an. Eine Übersicht über die untersuchten Substanzen ist in Tabelle 3 dargestellt.
Tabelle 3: Untersuchten Organochlorpestizide (OCP).

<table>
<thead>
<tr>
<th>Substanzname</th>
<th>Abkürzung</th>
<th>Strukturformel</th>
</tr>
</thead>
<tbody>
<tr>
<td>α- (+)- Hexachlorcyclohexan</td>
<td>α-(+)-HCH</td>
<td></td>
</tr>
<tr>
<td>α- (-)- Hexachlorcyclohexan</td>
<td>α-(−)-HCH</td>
<td></td>
</tr>
<tr>
<td>β – Hexachlorcyclohexan</td>
<td>β – HCH</td>
<td></td>
</tr>
<tr>
<td>γ – Hexachlorcyclohexan</td>
<td>γ – HCH,</td>
<td></td>
</tr>
<tr>
<td>δ – Hexachlorcyclohexan</td>
<td>δ – HCH</td>
<td></td>
</tr>
<tr>
<td>ε – Hexachlorcyclohexan</td>
<td>ε – HCH</td>
<td></td>
</tr>
<tr>
<td>Hexachlorbenzol</td>
<td>HCB</td>
<td></td>
</tr>
<tr>
<td>Pentachlorbenzol</td>
<td>QCB</td>
<td></td>
</tr>
<tr>
<td>Chlordan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>HC</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endosulfan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mirex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methoxychlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p,p′ Dichlordiphenyltrichlorethan</td>
<td>p,p′ DDT</td>
<td></td>
</tr>
<tr>
<td>p,p′ Dichlordiphenyldichlorethen</td>
<td>p,p′ DDE</td>
<td></td>
</tr>
</tbody>
</table>
p,p’ Dichlordiphenyldichlorethan p,p’ DDD
o,p’ Dichlordiphenyltrichlorethan o,p’ DDT
o,p’ Dichlordiphenyldichlorethen o,p’DDE
o,p’ Dichlordiphenyldichlorethan o,p’ DDD

Die Verwendung des technischen HCH wird als die größte Quelle von γ–HCH angenommen; allerdings sank die Verwendung von Lindan zwischen 1970 und 1996 um zwei Drittel. Als Zielwert für Bodenkonzentrationen von Lindan wird in den Niederlanden 0.00005 mg/kg angesehen (de Vries et al., 1988). Angesichts der aktuellen Belastung werden als Critical Load-Werte für Sand von 0.8 g/ha*a und Kalkböden von 0.16 g/ha*a angegeben; diese Werte werden aktuell in den Wäldern noch überschritten (Ecomed, 2004).

5.1.5. Polybromierte Diphenylether (PBDE)

Das Monitoring von bromierten POPs sollte fester Bestandteil behördlicher Untersuchungsprogramme und eines zukunftsweisenden Qualitätsmanagements in der Lebens- und Futtermittelindustrie sein.
5.2. Probenahme

5.2.1. Immissionsmessungen mit High und Low Volume Samplern

Zur aktiven Luftprobenahme werden an der UFS ein HVS und ein LVS eingesetzt (Abbildung 4). Diese aus MONARPOP übernommene Sammlerkonfiguration (Abbildung 5) besteht aus einem Low Volume Sampler (Durchflussrate 3 m³/h, Fa. Digitel) mit einem mechanisch umschaltbaren Kartuschenkarusell und einem ventilgesteuertem High Volume Sampler (Durchflussrate 8 m³/h, Fa. Kroneis).

Abbildung 4: Messstandort an der Umweltforschungsstation Schneefernerhaus (UFS). 1 Low Volume Sampler (inklusive Steuereinheit), 2 High Volume Sampler, 3 Depositionssammler, 4 Schutzhütte für Passivsammler (SPMD), im Rahmen von POPALP nur im NP Berchtesgaden.

Erfahrungswerte haben gezeigt, dass an diesen hochalpinen quellfernen Standorten ein Probenahmezeitraum von mindestens drei Monaten notwendig ist, um die für die Laboranalyse notwendigen Stoffmengen im Extrakt zu erreichen (Offenthaler et al., 2009).

5.2.2. Trajektorienvorhersage

Abbildung 6: Definition der Quellgebiete für die Trajektorienvorhersage

Die Steuereinheit des Low- und High-Volume Samplers steuert den Sampler so, dass für jedes der drei definierten Herkunftsgebiete (NW, NE, S) über den gesamten Messzeitraum stets dieselbe Kartusche bzw. derselbe Filter und für die Zeit, während der die Luftmasse aus keinem der drei vordefinierten Gebiete (UD) kommt, stets die vierte Kartusche/Filter belüftet wird.

Wegen Spreng- und Bohrarbeiten im Zusammenhang mit dem Bau der neuen Seilbahn an die UFS und damit zu erwartender Staubbelastung wurden im Zeitraum 07.05.-17.06.09 sämtliche Messgeräte prophylaktisch abgeschaltet und die Geräte verpackt. Seit diesem Zeitpunkt liefen alle Messungen an der UFS mit kurzen Unterbrechungen (Stunden bis wenige Tage) planmäßig.

5.2.3. Immissionsmessungen mit Passivsammlern (SPMDs) im NP BG

Zur Messung der POPs in der Luft an Punkten ohne Stromversorgung (Höhenprofil Berchtesgaden) werden passiv akkumulierende SPMDs (Semipermeable Membrane Devices) eingesetzt. Diese bestehen aus einem dünnwandigen Polyethylenenschlauch (LDPE), gefüllt mit einem natürlichen Lipid (Triolein). Die Aufnahme der POPs erfolgt durch Diffusion (Levy et al., 2009). Die SPMDs werden in einen Metallrahmen gespannt und in einer unbehandelten Holzhütte (Wetterhütte), geschützt vor direkter Sonneneinstrahlung, Wind und Niederschlägen, exponiert (Abbildung 7).
Der 2.5 cm breite und 65 μm dicke Polyethylenschlauch (LDPE) der SPMD wurde von der Firma VWR (Ismaning, Deutschland) bezogen. Der LPDE-Schlauch wurde in einer Entfernung von 2.5 cm von einem Ende verschweißt und mit 700 μl Triolein (Sigma, Deutschland, 99 %), welches zuvor mit Performance Reference Compounds (PRC: alle 16 EPA-PAH als 13C-markierte Verbindungen) dotiert wurde, blasenfrei mit einer Pipette befüllt. Das offene Schlauchende wurde in einem Abstand von 23 cm zur ersten Naht nochmals verschweißt. An beiden Enden wurden durch Umklappen des Schlauchendes und Verschweißen noch Aufhängungsösen angebracht. Die Gesamtlänge des Schlauches betrug 29 cm, die mit Triolein gefüllte Fläche 115 cm². Die Herstellung der SPMD erfolgte in einer mit Toluol gereinigten Glove-Box unter Stickstoffatmosphäre, um Kontaminationen zu verhindern. Die gebrauchsfertigen SPMDs wurden in ausgeheizten Glasfläschchen bei -28°C gelagert. Der Transport zum und vom Einsatzort erfolgte gekühlt.

5.2.4. Depositionsmessungen

Abbildung 8: Schematischer Aufbau der eingesetzten Depositionssammler

Niederschlagsmessungen im Gebirge sind bekanntermaßen wegen des Windeffekts problematisch. Eine genaue Erfassung der Menge ist im Hochgebirge nur in erster Näherung möglich. Bisher wurde die Niederschlagsmenge, die zur Berechnung des Eintrages von POPs essentiell ist, gutachterlich an Hand der vom DWD zur Verfügung gestellten Niederschlagsdaten vom Zugspitzgipfel und der Messung direkt an der UFS abgeschätzt. Da für eine exakte Berechnung der Deposition die genauen Niederschlagsmengen, die über die Kartusche gelaufen sind, erforderlich sind, wurde seit dem Probeannahmezeitraum 17.06. - 08.10.2009 der effektive Durchfluss durch die Depositionssammler direkt gemessen. Dazu wurde unter zwei Depositionssammern jeweils ein Fass mit einem Fassungsvermögen von 100 Litern installiert. Die Fässer werden monatlich gewechselt, notfalls aufgetaut und die Niederschlagsmenge bestimmt; die möglichen Verluste durch Verdunstung werden selbst für die Sommermonate als eher gering eingeschätzt.

Die Depositionsmessungen erfolgten in der Regel problemlos; während der Bauarbeiten an der neuen Seilbahn wurden die Messungen unterbrochen. Im Spätherbst 2010 wurden zwei Sammler wegen defekter Heizung abgebaut und in der Folge ersetzt.

5.2.5. Bodenuntersuchung im NP BG

Die Standort- und Profilaufnahme sowie die Beprobung der Flächen erfolgten nach dem GRABEN-Standard. Dabei erfolgte eine horizontweise Beprobung des Bodens. Die mineralischen Bodenhorizonte wurden aus der Profilwand eines Schurfs entnommen, der von Hand am GPS-
vermessenen Mittelpunkt der 180 m² großen Beprobungsfläche angelegt wurde. Die organische Auflage (Of- und Oh-Horizont), der Ah- (humoser Oberboden), der Bv- und der Cv-Horizont wurden an 8 regelmäßig über die Fläche verteilten Satelliten beprobt (Abbildung 9), womit eine gute Reproduzierbarkeit der Ergebnisse und eine ausreichende Flächenrepräsentativität gewährleistet wurden. Bedingt durch die spezielle Fragestellung wurde zusätzlich die Blatt- und Nadelförna (L-Horizont) beprobt.

Abbildung 9: Schematische Darstellung der Beprobungsfläche mit den Beprobungspunkten

Zur Herstellung des Volumenbezugs für die Bestimmung der Trockenrohdichte wurden aus der organischen Auflage (Of + Oh) und dem Oberbodenhorizont (Ah) Proben mittels Stechrahmen (Fläche 400 cm²) entnommen. Die mineralischen Unterboden- und Untergrundhorizonte wurden zur Herstellung des Volumenbezugs mittels Stechzylinder beprobt. Soweit vom Skelettgehalt des Bodens her möglich wurden je Bodenhorizont drei Stechzylinderproben mit einem Volumen von je 100 cm³ entnommen. Detaillierte Angaben zur Probenahme und den Proben sind den Probenprotokollen in der Anlage zu entnehmen.

5.2.6. Standort- und Bodendaten

Abbildung 11: Lage der Probenahmestandorte im Nationalpark Berchtesgaden. BG 0: Freiland (Meteorologie), BG 1 – BG 6: Fichtenbestände (Boden, Fichtennadeln, SPMDs, Meteorologie), BG 7: Freiland (SPMDs, Meteorologie)
Tabelle 4: Übersicht über Lage, Standort- und Bodenparameter im NP Berchtesgaden

<table>
<thead>
<tr>
<th>Standort</th>
<th>BG 0 (DE 23-1)</th>
<th>BG 1 (DE 23-2)</th>
<th>BG 2 (DE 23-3)</th>
<th>BG 3 (DE 23-3)</th>
<th>BG 4</th>
<th>BG 5 (DE 23-4)</th>
<th>BG 6</th>
<th>BG 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechtswert</td>
<td>4569835</td>
<td>4571089</td>
<td>4571852</td>
<td>4572398</td>
<td>4572249</td>
<td>4571753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hochwert</td>
<td>5273524</td>
<td>5272985</td>
<td>5270980</td>
<td>5271670</td>
<td>5270168</td>
<td>5270387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Höhe Bestand (GPS) (m ü NN)</td>
<td>entfällt</td>
<td>797</td>
<td>974</td>
<td>1198</td>
<td>1334</td>
<td>1421</td>
<td>1505</td>
<td>entfällt</td>
</tr>
<tr>
<td>Höhe Bestand (TK) (m ü NN)</td>
<td>entfällt</td>
<td>770</td>
<td>950</td>
<td>1190</td>
<td>1330</td>
<td>1420</td>
<td>1500</td>
<td>entfällt</td>
</tr>
<tr>
<td>Höhe Klimahütte (TK) (m ü NN)</td>
<td>634</td>
<td>800</td>
<td>970</td>
<td>1215</td>
<td>1339</td>
<td>1425</td>
<td>1492</td>
<td>1670</td>
</tr>
<tr>
<td>Über-</td>
<td>z.T. (abgeschattet von Holzhütte)</td>
<td>z.T. (kleine Lichtung)</td>
<td>Keine (Freiland)</td>
<td>z.T. (kleine Lichtung)</td>
<td>Gering (Geländekante)</td>
<td>z.T. (Bestandesrand)</td>
<td>Ja (Bestand)</td>
<td>Keine (Freiland)</td>
</tr>
<tr>
<td>schirmung</td>
<td>kein Nord</td>
<td>Südwest</td>
<td>Nordost</td>
<td>West</td>
<td>Nordost</td>
<td>Nord</td>
<td>Ost</td>
<td></td>
</tr>
<tr>
<td>Inklination (°)</td>
<td>0</td>
<td>25</td>
<td>18</td>
<td>20</td>
<td>12</td>
<td>15</td>
<td>32</td>
<td>15</td>
</tr>
<tr>
<td>Formtyp</td>
<td>Bachtal</td>
<td>Hang</td>
<td>Hang</td>
<td>Hang</td>
<td>Hangverflachung</td>
<td>Hang</td>
<td>Hang</td>
<td></td>
</tr>
<tr>
<td>Baumarten</td>
<td>entfällt</td>
<td>Fichte, Lärche</td>
<td>Fichte</td>
<td>Fichte</td>
<td>Fichte, Lärche</td>
<td>Fichte, Lärche</td>
<td>entfällt</td>
<td></td>
</tr>
<tr>
<td>Bestand</td>
<td>entfällt</td>
<td>Fi JD</td>
<td>Fi AD</td>
<td>Fi alt mit Verjüngung</td>
<td>Fi AD</td>
<td>Fi AD</td>
<td>Fi AD</td>
<td>oberhalb Waldgrenze</td>
</tr>
<tr>
<td>Bodenform</td>
<td>Nicht untersucht</td>
<td>Braunerde-Rendzina</td>
<td>Braunerde-Rendzina</td>
<td>Braunerde-Rendzina</td>
<td>Braunerde-Rendzina</td>
<td>Braunerde-Rendzina</td>
<td>Nicht untersucht</td>
<td></td>
</tr>
<tr>
<td>Humusform</td>
<td>Nicht untersucht</td>
<td>feinhumus-armer Moder</td>
<td>F-Mull</td>
<td>Graswurzelfilzmoder</td>
<td>F-Mull</td>
<td>F-Mull</td>
<td>Graswurzelfilzmoder</td>
<td>Nicht untersucht</td>
</tr>
<tr>
<td>Substrat</td>
<td>Nicht untersucht</td>
<td>Dolomit-Hangschutt über Lokalmoor</td>
<td>Lehmigtonige Ab-</td>
<td>Schwemmummassen über Lokalmoor</td>
<td>Dachsteinkalkhangschutt über Lokalmoor</td>
<td>Blockreiche Lokalmoor</td>
<td>Dachsteinkalk-Hangschutt</td>
<td>Dachsteinkalk-Hangschutt</td>
</tr>
</tbody>
</table>

5.2.7. Untersuchung der Fichtennadeln im NP BG

Nadelalter bei der Ernte im Herbst betrug ca. ½, 1½ bzw. 2½ Jahre und bei der Ernte im Frühjahr ca. 1, 2 bzw. 3 Jahre (Tabelle 5). Verglichen man die Expositionszeiten verschiedener Nadeln, so ergaben sich jeweils vergleichbare Zeiträume für die Perioden H und der Summe aus den Perioden D + G.

Tabelle 5: Expositionszeit der einzelnen Nadeljahrgänge (NJG) für die drei Probenahmen (PRN)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PRN1/NJG1 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN1/NJG2 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN1/NJG3 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN2/NJG1 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN2/NJG2 E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN2/NJG3 F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN3/NJG1 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN3/NJG2 H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN3/NJG3 I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 12: Entnadelung in einer Glovebox

Die frischen Nadeln (Frischgewicht) wurden ausgeheizt und somit das Trockengewicht bestimmt. Für den Vergleich mit Ergebnissen aus anderen Projekten standen somit beide Bezugsgrößen zur Verfügung.

5.2.8. **Meteorologische Messungen im NP BG**

Deshalb wurden im Rahmen von POPALP an allen 7 Messhöhen klimatologische Messungen durchgeführt, welche für die Interpretation der gemessenen POPs in allen Kompartimenten eine wesentlich bessere Datenbasis lieferten, als aus der Extrapolation von Klimadaten von mehr oder weniger weit entfernten Klimastationen entsprechender Höhen möglich gewesen wäre.

Dazu wurden an allen SPMD-Hütten außen in einem kommerziellen Strahlungsschutz (Fa. Friedrichs) Temperatur- und Feuchtemesssensoren (Thermo/Hgyrobutton 23) angebracht. Zusätzlich wurden an den Messpunkten BG 1 (HMGU), BG 2 (NP BG), BG 4 (DWD), BG 5 (DWD) und BG 7 (DWD) meteorologische Stationen (Lufttemperatur, Luftfeuchte, Strahlung, Windrichtung, Windgeschwindigkeit) installiert. Diese Messungen liefen seit April 2009 kontinuierlich. Im Dezember 2009 wurde ein weiterer Messpunkt (Temperatur und Feuchte) im Tal an der Wimbachbrücke (BG 0) eingerichtet, um bessere Aussagen zur Inversionshäufigkeit im unteren Hangbereich machen zu können.

Die gemessenen Temperaturen stellten unmittelbar die Grundlage für die Interpretation der ermittelten Schadstoffdaten am Höhenprofil dar. Für die Ableitung einer Inversionsstatistik allerdings wurden die Temperaturdaten wie folgt behandelt: Da jeweilige Standortsfaktoren den Temperaturverlauf am Hang prägen, und somit auch Inversionen mitunter eingeschränkt zu erkennen sind, wurde anhand der sich während absolut inversionsfreier Perioden ergebenden Temperaturmittelwerte ein monatsbezogener Korrekturfaktor auf Grund eines linearen Regressionsmodells errechnet. Anschließend wurde für jede der Messpunkte BG 0 bis BG 7 universell jeder Stundenwert neu bestimmt. Die Ermittlung von Inversionen erfolgte ebenfalls stundenweise, wobei ein Feuchtesprung (rF) um wenigstens ± 10% zwischen jeweils zwei Höhen in einer beliebigen Höhe am Profil die erste Voraussetzung für das Auftreten einer Inversion war. Als zweites Kriterium wurde eine Temperaturzunahme mit der Höhe zwischen jeweils zwei Messpunkten von wenigstens 0.2 K definiert. Mit diesem Wert wurden auch mögliche Messunsicherheiten bei der Temperaturmessung mittels Thermobuttons berücksichtigt. Mit Hilfe dieses sehr vereinfachten Berechnungsschemas, das keine detaillierte Einzelfallprüfung unter Zuhilfenahme weiterer meteorologischer Parameter ersetzen kann, konnten Hinweise zur Lage und Häufigkeit von Inversionen abgeleitet werden.

5.3. **Analytik**

UBA Langen (D) zum LfU (D) wechselte, wird hier auf die betreffenden Stoffgruppen eigens eingegangen.

5.3.1. **PCDD/F- und PCB-Analytik des LfU**

Analysiert wurde eine Vielzahl tetra- bis oktachlorierter Dioxine und Furane, wie in Tabelle 5 dargestellt.

Tabelle 6: Analysierte Dioxine und Furane

<table>
<thead>
<tr>
<th>Dioxine</th>
<th>Furane</th>
</tr>
</thead>
<tbody>
<tr>
<td>2378-TCDD</td>
<td>2378-TCDF</td>
</tr>
<tr>
<td>12378-PeCDD</td>
<td>12378-PeCDF</td>
</tr>
<tr>
<td>123478-HxCDD</td>
<td>23478-PeCDF</td>
</tr>
<tr>
<td>123678-HxCDD</td>
<td>123678-HxCDF</td>
</tr>
<tr>
<td>123789-HxCDD</td>
<td>123678-HxCDF</td>
</tr>
<tr>
<td>1234678-HpCDD</td>
<td>234678-HxCDF</td>
</tr>
<tr>
<td>OCDD</td>
<td>123789-HxCDF</td>
</tr>
<tr>
<td>1234678-HpCDD</td>
<td>1234678-HpCDF</td>
</tr>
<tr>
<td>123789-HpCDD</td>
<td>1234789-HpCDD</td>
</tr>
<tr>
<td>OCDF</td>
<td>Summe TCDD</td>
</tr>
<tr>
<td>Summe PCDD</td>
<td>Summe PCDF</td>
</tr>
<tr>
<td>Summe TCDF</td>
<td>Summe TCDF</td>
</tr>
<tr>
<td>Summe PeCDD</td>
<td>Summe PeCDF</td>
</tr>
<tr>
<td>Summe HxCDD</td>
<td>Summe HxCDF</td>
</tr>
<tr>
<td>Summe HpCDD</td>
<td>Summe HpCDF</td>
</tr>
<tr>
<td>Summe PCDD/F</td>
<td>Summe 2378-Kongener</td>
</tr>
<tr>
<td>Summe PCDD/F</td>
<td>TEQ (ITEF)</td>
</tr>
<tr>
<td>Summe PCDF</td>
<td>TEQ (WHO-98)</td>
</tr>
</tbody>
</table>

Zum Methodenvergleich der PCDD/PCDF- und PCB-Analytik stellte das UBA Österreich, in dessen Labor zeitweise die Depositionsproben und Sammelkartuschen von der Zugspitze analysiert wurden, dem LfU zwei Depositionsrückstellproben vom Sonnblick (A) und Weißfluhjoch (CH) sowie die zugehörige Feldblindwertprobe (FBW) vom Sonnblick zur Verfügung. In Tabelle 7 und Tabelle 8 sind die PCDD/PCDF- und PCB-Ergebnisse jeweils den Werten aus dem MONARPOP-Projekt gegenübergestellt.

Bei den PCDD/PCDF spielte der Feldblindwert keine Rolle. Bei den PCB lag der Feldblindwert für die leichter flüchtigen tri- und tetrachlorierten Kongeneren PCB 28, 52 und 77 bei 53 %, 41 % und 30 % des jeweiligen Wertes der Probe vom Sonnblick, für das hexachlorierte PCB 169 bei 69 %. Bei allen anderen Kongeneren sowie dem TEQ-Wert lagen die Feldblindwerte bei weniger als 25 % der Werte in der Probe. In der im gleichen Zeitraum (März 2009) aufgearbeiteten Laborblindwertprobe des LfU-Labors (15 g Kieselgel als Matrix) lag nur für PCB 52 und PCB 105 mit 36 % bzw. 26 % der Blindwert über 25 % des Wertes der Probe vom Sonnblick.

Tabelle 7: Vergleich der PCDD/PCDF-Ergebnisse in Depositionsproben (Werte in pg/m²*d)

<table>
<thead>
<tr>
<th>LIMS-Nr. LfU 090057_01</th>
<th>090057_02</th>
<th>090057_03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standort</td>
<td>Weissfluhjoch</td>
<td>Sonnblick FBW</td>
</tr>
<tr>
<td>Zeitraum</td>
<td>21.04.-09.09.05</td>
<td>03.05.-08.09.05</td>
</tr>
<tr>
<td>2378-TCDD</td>
<td>0.022</td>
<td>< 0.018</td>
</tr>
<tr>
<td>12378-PeCDD</td>
<td>< 0.079</td>
<td>< 0.13</td>
</tr>
<tr>
<td>123478-HxCDD</td>
<td>0.099</td>
<td>< 0.042</td>
</tr>
<tr>
<td>123678-HxCDD</td>
<td>0.21</td>
<td>< 0.046</td>
</tr>
<tr>
<td>123789-HxCDD</td>
<td>0.16</td>
<td>< 0.038</td>
</tr>
<tr>
<td>1234678-HpCDD</td>
<td>7.48</td>
<td>0.18</td>
</tr>
<tr>
<td>OCDD</td>
<td>16.6</td>
<td>24.0</td>
</tr>
<tr>
<td>2378-TCDF</td>
<td>1.05</td>
<td>< 0.056</td>
</tr>
<tr>
<td>12378-PeCDF</td>
<td>0.38</td>
<td>< 0.10</td>
</tr>
<tr>
<td>23478-PeCDF</td>
<td>0.51</td>
<td>< 0.088</td>
</tr>
<tr>
<td>123478-HxCDF</td>
<td>0.57</td>
<td>< 0.022</td>
</tr>
<tr>
<td>123678-HxCDF</td>
<td>0.51</td>
<td>< 0.020</td>
</tr>
<tr>
<td>123789-HxCDF</td>
<td>< 0.15</td>
<td>< 0.039</td>
</tr>
<tr>
<td>234678-HxCDF</td>
<td>0.35</td>
<td>< 0.028</td>
</tr>
<tr>
<td>1234678-HpCDF</td>
<td>1.76</td>
<td>< 0.080</td>
</tr>
<tr>
<td>1234789-HxCDF</td>
<td>< 0.17</td>
<td>< 0.12</td>
</tr>
<tr>
<td>OCDF</td>
<td>1.27</td>
<td>1.7</td>
</tr>
<tr>
<td>1-TEQ</td>
<td>0.70</td>
<td>0.003</td>
</tr>
<tr>
<td>I-TEQ (mit halber NG)</td>
<td>0.71</td>
<td>0.030</td>
</tr>
<tr>
<td>WHO-TEQ</td>
<td>0.69</td>
<td>0.002</td>
</tr>
<tr>
<td>WHO-TEQ (mit halber NG)</td>
<td>0.70</td>
<td>0.040</td>
</tr>
<tr>
<td>Summe TCDD</td>
<td>0.15</td>
<td>nn</td>
</tr>
<tr>
<td>Summe PeCDD</td>
<td>3.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Summe HxCDD</td>
<td>3.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Summe HpCDD</td>
<td>11.5</td>
<td>14.0</td>
</tr>
<tr>
<td>Summe TCD</td>
<td>14.8</td>
<td>4.1</td>
</tr>
<tr>
<td>Summe PeCDF</td>
<td>9.9</td>
<td>3.9</td>
</tr>
<tr>
<td>Summe HxCDF</td>
<td>5.5</td>
<td>2.9</td>
</tr>
<tr>
<td>Summe HpCDF</td>
<td>2.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Bei Gehalten < Bestimmungsgrenze (BG) ist die BG (Signal/Rausch-Verhältnis von 10:1 der betreffenden Massenspur) angegeben. NG = Nachweisgrenze (Signal/Rausch-Verhältnis von 3:1)

Die Übereinstimmung ist gut bis zufriedenstellend, da es sich trotz gleichen Standortes jeweils um verschiedene Depositionskartuschen, d.h. um unterschiedliche Proben handelt. Zudem liegt die Analytik der PCDD/PCDF und dl-PCB im Ultrastraporenbereich, häufig im Bereich der analytischen Bestimmungsgrenze. Dies ist sehr wahrscheinlich die Ursache für die auffallend hohen Abweichungen bei den Homologensummen der Tetra- und PentaCDD. Die Ursache für die deutlich höheren eigenen Werte für das PCB 123 ist eine Koelution mit einem anderen PCB-Kongener auf der verwendeten GC-Säule (DB-XLB, 60 m). Der Einfluss auf den TEQ-Wert ist jedoch vernachlässigbar.
Tabelle 8: Vergleich der PCB-Ergebnisse in Depositionsproben (pg/m²*d)

<table>
<thead>
<tr>
<th>LIMS-Nr. LfU</th>
<th>090057_01</th>
<th>090057_03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tage</td>
<td>141</td>
<td>129</td>
</tr>
<tr>
<td>Standort</td>
<td>Weissfluhjoch</td>
<td>Sonnblick</td>
</tr>
<tr>
<td>Zeitraum</td>
<td>21.04.-09.09.05</td>
<td>MONARPOP 03.05.-08.09.05</td>
</tr>
</tbody>
</table>

Indikator-PCB

<table>
<thead>
<tr>
<th>PCB</th>
<th>090057_01</th>
<th>090057_03</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB 28</td>
<td>41</td>
<td>57</td>
</tr>
<tr>
<td>PCB 52</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>PCB 101</td>
<td>69</td>
<td>68</td>
</tr>
<tr>
<td>PCB 138</td>
<td>122</td>
<td>117</td>
</tr>
<tr>
<td>PCB 153</td>
<td>172</td>
<td>135</td>
</tr>
<tr>
<td>PCB 180</td>
<td>94</td>
<td>87</td>
</tr>
<tr>
<td>Summe 6 Indikator-PCB</td>
<td>536</td>
<td>503</td>
</tr>
</tbody>
</table>

Mono-ortho PCB

<table>
<thead>
<tr>
<th>PCB</th>
<th>090057_01</th>
<th>090057_03</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB123</td>
<td>6.4</td>
<td>4.2</td>
</tr>
<tr>
<td>PCB118</td>
<td>58</td>
<td>44</td>
</tr>
<tr>
<td>PCB114</td>
<td>< 0.689</td>
<td>< 0.680</td>
</tr>
<tr>
<td>PCB105</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>PCB167</td>
<td>6.7</td>
<td>5.1</td>
</tr>
<tr>
<td>PCB156</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>PCB157</td>
<td>2.8</td>
<td>1.3</td>
</tr>
<tr>
<td>PCB189</td>
<td>2.2</td>
<td>3.6</td>
</tr>
<tr>
<td>PCB123</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>PCB118</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>PCB114</td>
<td>1.5</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Non-ortho PCB

<table>
<thead>
<tr>
<th>PCB</th>
<th>090057_01</th>
<th>090057_03</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB81</td>
<td>0.33</td>
<td>0.43</td>
</tr>
<tr>
<td>PCB77</td>
<td>9.1</td>
<td>8.9</td>
</tr>
<tr>
<td>PCB126</td>
<td>1.8</td>
<td>2.6</td>
</tr>
<tr>
<td>PCB169</td>
<td>2.2</td>
<td>1.0</td>
</tr>
<tr>
<td>PCB81</td>
<td>0.29</td>
<td>0.41</td>
</tr>
<tr>
<td>PCB77</td>
<td>0.29</td>
<td>0.41</td>
</tr>
</tbody>
</table>

PCB-WHO-TEQ

<table>
<thead>
<tr>
<th>PCB-WHO-TEQ</th>
<th>0.226</th>
<th>0.296</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-WHO-TEQ</td>
<td>0.29</td>
<td>0.24</td>
</tr>
</tbody>
</table>

5.3.2. PBDE-Analytik des LfU

Am LfU ist die Analytik der PBDE in die gleichzeitige Bestimmung der PCDD/PCDF und PCB integriert. Während der mehrstufigen Reinigung der Extrakte verhalten sich die PBDE weitgehend wie die PCDD/PCDF. Bei Proben, in denen nur die PBDE bestimmt wurden, genügte ein zweistufiger Clean-up der Extrakte. Wie es international inzwischen üblich ist, wurden die acht in der folgenden Tabelle aufgeführten PBDE-Kongenere bestimmt, welche den Hauptanteil in den drei technischen PBDE-Gemischen repräsentieren.

Tabelle 9: Analysierte PBDE-Kongenere

<table>
<thead>
<tr>
<th>BDE-Kongenere</th>
<th>Anzahl Bromatome</th>
<th>Substitutionsmuster</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>3</td>
<td>2,4,4’</td>
</tr>
<tr>
<td>47</td>
<td>4</td>
<td>2,2’,4,4’</td>
</tr>
<tr>
<td>99</td>
<td>5</td>
<td>2,2’,4,4,5</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>2,2’,4,4,6</td>
</tr>
<tr>
<td>153</td>
<td>6</td>
<td>2,2’,4,4,5,5’</td>
</tr>
<tr>
<td>154</td>
<td>6</td>
<td>2,2’,4,4,5,6’</td>
</tr>
<tr>
<td>183</td>
<td>7</td>
<td>2,2’,3,4,4,5,6’</td>
</tr>
<tr>
<td>209</td>
<td>10</td>
<td>2,2’,3,3’,4,4,5,5,6,6’</td>
</tr>
</tbody>
</table>

Nach dem Clean-up und Zugabe von 13C$_{12}$-BDE 138 als Wiederfindungsstandard wurden die PBDE mit HRGC-LRMS an einer unpolaren kurzen Kapillarsäule (DB-5ms, 15 m Länge, 0.25 mm ID, 0.1 µm Filmdicke) analysiert. Details zur instrumentellen Analytik sind bei Schütz (2004) beschrieben.

Für jeden Bromierungsgrad wurden die Massenspuren der zwei bzw. drei intensivsten Molekülionenmassen für die nativen Verbindungen und die internen 13C$_{12}$-Standards aufgenommen (für BDE 209: Massen des [M–2Br]$^+$-Fragmentions). Die Quantifizierung erfolgte über die analogen internen 13C$_{12}$-Standards nach der Isotopenverdünnungsmethode unter Berücksichtigung der aktuellen Responsefaktoren (Drei-Punkt-Kalibrierung). Vor jeder Messserie erfolgte eine Überprüfung der Responsefaktoren durch Messung einer Kalibrierlösung. Die maximal zulässige Abweichung betrug 20 %.

Tabelle 10: PBDE-Ergebnisse in Depositionsrückstellproben und zugehörigen Blindwertproben (alle Werte in ng absolut)

<table>
<thead>
<tr>
<th>LIMS-Nr. LfU</th>
<th>Kartuschen-Nr.</th>
<th>Standort</th>
<th>Zeitraum</th>
<th>PBDE 28</th>
<th>PBDE 47</th>
<th>PBDE 99</th>
<th>PBDE 100</th>
<th>PBDE 153</th>
<th>PBDE 154</th>
<th>PBDE 183</th>
<th>PBDE 209</th>
</tr>
</thead>
<tbody>
<tr>
<td>090057_04</td>
<td>104</td>
<td>Sonnblick</td>
<td>16.03.-20.07.06</td>
<td>2.45</td>
<td><0.18</td>
<td>0.17</td>
<td>76.7</td>
<td>40.8</td>
<td>31.2</td>
<td>1.69</td>
<td>110</td>
</tr>
<tr>
<td>090057_05</td>
<td>118 BW</td>
<td>Sonnblick</td>
<td>16.03.-20.07.06</td>
<td>0.62</td>
<td>0.74</td>
<td>0.63</td>
<td>0.19</td>
<td>0.12</td>
<td>0.21</td>
<td>0.39</td>
<td>1.35</td>
</tr>
<tr>
<td>090057_06</td>
<td>113</td>
<td>Zugspitze</td>
<td>14.03.-11.07.06</td>
<td>0.075</td>
<td>0.58</td>
<td>0.45</td>
<td>0.16</td>
<td>0.15</td>
<td>0.20</td>
<td>0.27</td>
<td>50.4</td>
</tr>
<tr>
<td>090057_07</td>
<td>108</td>
<td>Weissfluhjoch</td>
<td>16.03.-14.07.06</td>
<td><0.053</td>
<td>0.18</td>
<td>0.13</td>
<td>0.060</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>1.53</td>
</tr>
<tr>
<td>090057_08</td>
<td>103</td>
<td>BW Kartusche</td>
<td>April 2009</td>
<td><0.14</td>
<td>0.086</td>
<td>0.084</td>
<td>0.065</td>
<td>0.094</td>
<td>0.12</td>
<td><0.082</td>
<td><1.97</td>
</tr>
<tr>
<td>090005_04</td>
<td>-</td>
<td>Laborblindwert</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 11: Vergleich der PBDE-Ergebnisse in Depositionsproben (Werte in pg/m²*d)

<table>
<thead>
<tr>
<th>Standort / Zeitraum</th>
<th>LIMS-Nr. LfU</th>
<th>Sonnblick</th>
<th>16.03.-20.07.06 MONARPOP</th>
<th>Zugspitze</th>
<th>14.03.-11.07.06 MONARPOP</th>
<th>Weissfluhjoch</th>
<th>16.03.-14.07.06 MONARPOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDE 28</td>
<td>090057_04</td>
<td>367</td>
<td>275</td>
<td>10</td>
<td>6.0</td>
<td>12</td>
<td>5.4</td>
</tr>
<tr>
<td>BDE 47</td>
<td>39243</td>
<td>36900</td>
<td>117</td>
<td>175</td>
<td>90</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>BDE 99</td>
<td>63114</td>
<td>52100</td>
<td>99</td>
<td>100</td>
<td>71</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>BDE 100</td>
<td>11465</td>
<td>6350</td>
<td>30</td>
<td>22</td>
<td>25</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>BDE 153</td>
<td>6095</td>
<td>3950</td>
<td>39</td>
<td>15</td>
<td>23</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>BDE 154</td>
<td>4663</td>
<td>2520</td>
<td>32</td>
<td>13</td>
<td>28</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>BDE 183</td>
<td>253</td>
<td>172</td>
<td>62</td>
<td>34</td>
<td>42</td>
<td>887</td>
<td></td>
</tr>
<tr>
<td>BDE 209</td>
<td>16474</td>
<td>64800</td>
<td>7978</td>
<td>11000</td>
<td>7187</td>
<td>232000</td>
<td></td>
</tr>
</tbody>
</table>

Aufarbeitung der Immissionsproben

Auch bei praktisch minimal möglichen Laborblindwerten sind die PBDE-Absolutmengen in den 20%-Aliquoten der Luftprobenextrakte folglich so niedrig, dass in der Kombination aller notwendigen Arbeitschritte im Labor der Verfahrensblindwert noch zu hoch ist. Deshalb wurde auf die Aufarbeitung und Analytik der weiteren Extrakte verzichtet. Die einzige mögliche Lösung wäre gewesen, die kompletten Extrakte für die PBDE-Analytik zu verwenden um dadurch die PBDE-Mengen entsprechend um das Fünffache zu erhöhen.

Aufarbeitung der Bodenproben

Wie im MONARPOP-Projekt führte das Labor des UBA in Langen (Arbeitsgruppe Dr. Wilhelm Knoth) die PBDE-Analytik der Bodenproben mit HRGC-HRMS durch. Von den Streuauflagen (L-Horizonte) führte das LfU selbst die PBDE-Bestimmung zusammen mit der PCDD/PCDF- und PCB-Analytik durch. Dazu erhielt das LfU vom HMGU das nicht benötigte Probenmaterial und führte nach der Gefriertrocknung in analoger Weise die Extraktion mit einer großen Probenmenge (ca. 40 g TS) durch um eine möglichst repräsentative Teilprobe zu erhalten. Aufgearbeitet und analysiert wurde ein 50%-Aliquot der Extrakte.

5.3.3. Analytik des IÖC-HMGU

Die Analytik des IÖC umfasste die OCP, PCB und PAH in den Matrices Boden, Nadeln, SPMDs, Aktivsammler – und Depositionssammlerkartuschen; zusätzlich wurden die PCDD/F in den SPMDs analysiert. Vor allen Extraktionen erfolgte die Zugabe von 13C-markierten bzw. deuterierten Standardmischungen zum Probenmaterial.

Zur Stoffextraktion aus den SPMDs wurden die Schläuche zerschnitten und mit Cyclohexan (100 mL) im Erlenmeyer-Kolben 24 h auf einer Schüttelmaschine extrahiert.
Bei der Nadelextraktion wurden etwa 10 g unzerkleinerte Nadeln mit Cyclohexan (100 mL) im Erlenmeyer-Kolben 24 h auf einer Schüttelmaschine extrahiert.

Zur Stoffextraktion aus dem Boden wurden etwa 10 g Boden mit Diatomeenerde verrieben und mit der beschleunigten Lösungsmittelalextraktion mit Hexan/Aceton (3:1, V/V) extrahiert (2 statische Zyklen à 10 Minuten).

Entsprechend wurden die mit XAD gefüllten Aktivsammler-Kartuschen 24 h im Soxhlet mit Hexan/Aceton (3:1, V/V) extrahiert.

Hinsichtlich der Depositionsammlerkartuschen erfolgte nach dem Ausblasen des in der Kartusche befindlichen Wassers mit reinem Stickstoff die Extraktion im Soxhlet analog den Aktivsammlern.

Vor der instrumentellen Messung war eine Aufreinigung des Probenextrakts notwendig. Die Aufreinigungsschritte im Rahmen des Cleanup-Verfahrens sind für die verschiedenen Verbindungsklassen unterschiedlich. Innerhalb einer Verbindungsklasse sind sie für alle Matrices gleich.

Genauere Angaben zu der Probenaufreinigung und instrumentellen Analytik können in der Literatur (Wang et al., 2009; Cok et al., 2009) nachgelesen werden.

5.3.4. ** Mikro-EROD-Bioassay-Bestimmung am IÖC-HMGU**

Die bioakkumulativen Stoffe wurden zuerst im Soxhlet extrahiert (Toluol, 24 Stunden). Es wurden die nicht persistenten Stoffe durch ein Clean-up Verfahren entfernt. Zur Abtrennung von Substanzen, die den Bioassay stören können (z.B. Naturstoffe und polyzyklische aromatische Kohlenwasserstoffe), wurde eine Chromatographiesäule eingesetzt (Kieselgel, Kieselgel mit 44 % H₂SO₄ w/w, Kieselgel + 4 % H₂O v/v und wasserfreies Natriumsulfat). Das Probenextrakt wird mit n-Hexan/Dichlormethan (10:1) eluiert, das Eluat eingeengt und in 200 µL DMSO unter leichtem Stickstoffstrom überführt. Anschließend wurden zusätzlich 200 µL DMSO und 100 µL Isopropanol hinzugegeben.
Der Mikro-EROD-Biossay wurde nach Donato et al. (1993) in modifizierter Form durchgeführt. Die Rattenhepatozellen H4IIEC3/T (H4IIE) wurden im Brutschrank (bei 95% Luftfeuchtigkeit, 37°C und 7% CO₂) in angereichertem Dulbecco’s Minimum Essential-Kulturmedium (DMEM) kultiviert.

Für die Quantifizierung der Proben wurde eine Standardkurve mit den Konzentrationen des TCDD-Standards und deren spezifischen EROD-Aktivitäten berechnet. Diese Kurve ist eine Vier-Parameter-Funktion, daraus lässt sich die Masse an 2,3,7,8-TCDD bzw. deren Äquivalentmasse pro Probe bestimmen (EROD-TEQ-Werte pro Probe).
6. Ergebnisse und Diskussion

6.1. Immissionsmessungen an der UFS

Die Messung der Konzentration der POPs in der Luft erfolgte getrennt für drei vordefinierte Herkunftseben, für die Quellregion Nordwest (NW), Nordost (NE) und Süd (S). Konnte die an die Stationen antransportierte Luftmasse keinem der Quellgebiete zugeordnet werden, wurde sie als undefinierte Quellregion (UD) bezeichnet. Im Projektzeitraum MONARPOP/POPALP konnten an der UFS Schneefernerhaus (UFS) insgesamt 16 Messperioden (6 im Sommer, 10 im Winter), weitestgehend parallel auch zu den Depositionsmessungen, realisiert werden. In den Sommermessperioden lagen die Temperaturen im Mittel bei etwa 3.5°C und in den Wintermessperioden bei etwa -4.7°C (Tabelle 16). Die Häufigkeit, mit der die Luftmassen aus den entsprechenden Herkunftseben an der UFS gemessen wurden, ist in Tabelle 12 als prozentualer Anteil an der Gesamtzeit aufgeführt.

Tabelle 12: Prozentualer Anteil der einzelnen Sektoren an der Gesamtzeit im jeweiligen Messzeitraum

<table>
<thead>
<tr>
<th>UFS Schneefernerhaus</th>
<th>NW</th>
<th>NE</th>
<th>S</th>
<th>UD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dez 05-Marz 06</td>
<td>42</td>
<td>21</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>März 06-Jul 06</td>
<td>24</td>
<td>23</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>Jul 06-Nov 06</td>
<td>37</td>
<td>12</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>Nov 06-Feb 07</td>
<td>2</td>
<td>31</td>
<td>25</td>
<td>42</td>
</tr>
<tr>
<td>Feb 07-Jun 07</td>
<td>13</td>
<td>0</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>Jun 07-Okt 07</td>
<td>20</td>
<td>26</td>
<td>21</td>
<td>33</td>
</tr>
<tr>
<td>Okt 07-Jan 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 08-Apr 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr 08-Jul 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul 08-Nov 08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 08-März 09</td>
<td>31</td>
<td>12</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>März 09-Mai 09</td>
<td>19</td>
<td>22</td>
<td>52</td>
<td>7</td>
</tr>
<tr>
<td>Mai 09-Okt 09</td>
<td>33</td>
<td>11</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td>Okt 09-Jan 10</td>
<td>21</td>
<td>10</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Jan 10-Apr 10</td>
<td>24</td>
<td>12</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>Apr 10-Jul 10</td>
<td>35</td>
<td>14</td>
<td>41</td>
<td>10</td>
</tr>
</tbody>
</table>

rot Sommermesszeiträume, blau Wintermesszeiträume

6.1.1. PCDD/F

Die Darstellung der prozentualen Anteile der Summen der tetra- bis oktachlorierten Dioxine und Furane an der Gesamtsumme der PCDD/F liefert meist ein charakteristisches Homologenprofil. Im Allgemeinen nimmt der Anteil der PCDF mit dem Chlorierungsgrad ab, während es sich für die PCDD genau umgekehrt verhält. Lohmann und Jones (1998) leiteten aus umfangreichen weltweiten Literaturdaten dafür ein „mittleres Umweltmuster“ ab. Spezielle Labor- und Verbrennungsversuche sowie zahlreiche PCDD/F-Messungen in der Umwelt führten daneben auch zur Definition quellencharakteristischer Homologenprofile, welche oft als halbquantitative Methoden zur Quellidentifikation der PCDD/F herangezogen werden (Hagenmaier et al., 1994; Ogura et al., 2001b; Coutinho et al., 2007). Diese Muster werden aber meist nur in relativ quellnahen Gebieten gut abgebildet.
Die an der UFS gefundenen Homologenprofile (Abbildung 13) für die Herkunftsgebiete NW und S entsprechen weitestgehend diesem mittleren Umweltmuster. Dieses bildet sowohl Verbrennungsprozesse aus dem Hausbrand (Kohle, Holz), erkennbar an relativ hohen Anteilen höher-chlorierter Dioxine, als auch industrielle Verbrennungsprozesse, erkennbar an mittleren Anteilen von niedrig-chlorierten Furanen, ab. Für das Herkunftsgebiet NE wird eher ein suburbanes Muster abgebildet (Ogura et al., 2001).

Abbildung 13: Mittlere Homologenprofile der PCDD/F-Immissionskonzentration an der UFS Schneefernerhaus über den gesamten Zeitraum (2005-2010), getrennt für die Sommer- und Wintermessperioden.
Für das Herkunftsgebiet S zeigt sich im Sommer die Tendenz einer Verschiebung der Anteile hin zu niedrig-chlortierten Furanen und Dioxinen. Inwieweit dies auf einen erhöhten Anteil industrieller Verbrennungsprozesse zurückgeführt werden kann, oder ob im Sommer möglicherweise auch andere Prozesse (chemische Umwandlungs- oder Abbaureaktionen, meteorologische Prozesse) eine Rolle spielen, die zu veränderten Mustern führen, bedarf weiterer detaillierterer Datenanalysen.

In Abbildung 14 sind die Verhältnisse der mittleren Immissionskonzentrationen (Sommer/Winter) der tetra- bis oktachlorierten PCDD/F getrennt für die einzelnen Herkunftsgebiete und Sommer- und Winterhalbjahr dargestellt.

Abbildung 14: Verhältnisse der mittleren Immissionskonzentrationen Sommer/Winter getrennt gemittelt (Median) für die Summen der tetra- bis oktachlorierten PCDD/F

Besonders auffällig ist hierbei, dass für das Gebiet NW im Sommer meist höhere Konzentrationen gemessen wurden als im Winter. Für NE und S wurden im Sommer meist geringere Konzentrationen gemessen.

Diese Ergebnisse liefern erste Hinweise darauf, dass die vordefinierten Herkunftsgebiete unterschiedliche Emissionsmuster aufweisen. Diese könnten sowohl auf aktuelle Emissionsprozesse, wie z.B. nicht oder schlecht gefilterte Müllverbrennungsanlagen oder aber auch auf jahreszeitlich unterschiedliche Revolatisation von in der Vergangenheit deponierten PCDD/F zurückzuführen sein. Hinweise auf konkrete Quellen sind a priori nicht nachweisbar. Auch die Beurteilung einzelner Peaks ist nicht ohne weiteres möglich.

Das zur Abschätzung der Toxizität von PCDD/F-Gemischen herangezogene Toxizitätsäquivalent (TEQ) ist in Abbildung 15 im zeitlichen Verlauf über den gesamten Messzeitraum getrennt für die Herkunftsgebiete dargestellt. Auch wenn aufgrund einiger Datenlücken keine statistischen Aussagen möglich sind, so ist für NW und S die Tendenz einer Abnahme der Toxizitätsäquivalente zu beobachten, für NE hingegen nicht.

Da die TEQ sehr wesentlich durch die giftigsten Kongenere gebildet werden, ergibt sich für die Darstellung der Summe der 2,3,7,8-PCDD/F ein analoges Bild (nicht dargestellt).

Nähere Diskussionen zu diesen Trends oder zu extremen Einzelwerten sind vorerst (noch) nicht sinnvoll. Dazu müsste zunächst noch die jahreszeitliche Variabilität separiert werden, was aufgrund der noch zu geringen Anzahl an Messperioden nicht möglich ist. Zudem sind die Messzeiträume in den Jahren sowohl von der Jahreszeit (Monate), als auch von der Anzahl der Tage nicht identisch.
Für die Interpretation singulärer Ereignisse wie Vulkanausbrüche oder Waldbrände sind diese Messungen ohne weitere Zusatzinformationen derzeit nicht geeignet.

Auch die Konzentrationen der Luftmassen, die nicht eindeutig einem definierten Herkunftsgebiet zugeordnet werden können (UD), zeigen einen Anstieg. Eine Erklärung hierfür ist nicht einfach zu geben. Da zur Einteilung der Herkunftsgebiete per Definition die Luftmasse mindestens zwei Tage über einem der drei Herkunftsgebiete liegen muss (Trajektorienvorhersage), könnten rein theoretisch die gemessenen UD-Konzentrationswerte ebenso fast ausschließlich oder überwiegend auf Schadstofftransporten aus dem Sektor NE basieren, wenn sich die Luftmasse sehr häufig, aber immer kürzer als zwei Tage über dem NE Sektor aufgehalten hat.

In einer Übersichtspublikation von 1998 wird auf der Basis umfangreicher Studien eine Klassifikation für entlegene, ländliche und urbane/industrialisierte Standorte anhand der PCDD/F-Konzentration definiert (Lohmann, Jones 1998). Standorte mit mittleren Konzentrationen der Σ P4-8CDD/F <0.5 pg/m³ (TEQ <10 fg/m³), werden als entlegene Standorte bezeichnet. In diesem Konzentrationsbereich liegen auch die an der UFS gemessenen Werte (Tabelle 13).

Ein umfangreicher Literaturvergleich ist auch in Hung et al. (2002) enthalten. Darin sind für reine „background“ Luft in Schweden (Rörvik) für Anfang der 1990-er Jahre PCDD- und PCDF-Summen von 0.22-0.47 bzw. 0.08-0.24 pg/m³ angegeben, ähnliche Werte wurden zu dieser Zeit auch in der Antarktis gemessen.

<table>
<thead>
<tr>
<th>Tabelle 13: Mediane und Maxima der PCDD und PCDF Konzentrationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFS (Median/Max)</td>
</tr>
<tr>
<td>TEQ (ITEF) *</td>
</tr>
<tr>
<td>0.52/7.1</td>
</tr>
<tr>
<td>ΣPCDD/F **</td>
</tr>
<tr>
<td>0.04/0.6</td>
</tr>
<tr>
<td>ΣPCDD **</td>
</tr>
<tr>
<td>0.03/0.42</td>
</tr>
<tr>
<td>ΣPCDF **</td>
</tr>
<tr>
<td>0.01/0.22</td>
</tr>
</tbody>
</table>

* fg-TEQ/m³ ** pg/m³

Messungen der PCDD/F-Konzentration (Σ P4-8CDD/F) im Jahr 1999 zeigen für ländliche Standorte und Wälder auf Madeira Σ P4-8CDD/F – Konzentration von 0.2-1.8 pg/m³ und für den ΣTEQ Werte zwischen 1.7 und 59.6 fg/m³ (Coutinho et al., 2007).

6.1.2. PCB
Analysiert wurden die dioxinähnlichen PCB (insgesamt 12 Kongenere) sowie die 6 Indikator-PCB. Da die Konzentration einiger dioxinähnlicher PCB teils nahe an der Bestimmungsgrenze lag, ist es speziell für Trendaussagen sinnvoll, nur die Summe der Indikator-PCB zu verwenden. Die höchsten mittleren PCB-Konzentrationen wurden für das Herkunftsgebiet NE gemessen. Betrachtet man den zeitlichen Verlauf der Indikator-PCB (Abbildung 17) über den gesamten Messzeitraum, so ist für alle Herkunftsgebiete ein abnehmender Trend zu erkennen. Betrachtet man die Mittelwerte für die MONARPOP- und POPALP-Zeiträume getrennt, so ergibt sich eine Abnahme der Indikator-PCB-Konzentration um etwa 50%.

Im Sommer werden an der UFS stets höhere Konzentrationen gefunden. Höhere PCB-Konzentrationen im Sommer im Vergleich zum Winter wurden auch an den LfU-Messstationen im bayerischen Voralpenland (Grassau, Augsburg) sowie in Nordbayern gemessen (Körner et al. 2006).

Abbildung 17: Zeitlicher Verlauf der Summe der Indikator PCB, getrennt für die untersuchten Herkunftsgebiete für die Jahre 2005-2010

6.1.3. PAH

Abbildung 18: Zeitlicher Verlauf der Summe der EPA-PAH (ohne NAP) getrennt für die untersuchten Herkunftsgebiete für die Jahre 2005-2010

Die Konzentrationen einiger PAH (FLU, PHE, BaA) an der UFS liegen z.T. im selben Bereich, wie sie in ländlicher Umgebung oder in vorstädtischen Bereichen von Marseille gemessen wurden (Albinet et al., 2007); die Konzentrationen einiger anderer PAH (z.B. PYR, CHR, BkF) liegen nur wenig darunter.

Die Substanzverhältnisse zwischen ANT/(ANT+PHE), BaA/(BaA+CHR) oder FLA/(FLA+PYR), wie sie zur Unterscheidung der Verbrennungsquellen als Ursache der PAH-Emissionen herangezogen werden, zeigen keine jahreszeitlichen Unterschiede (Tabelle 14).

Tabelle 14: Verhältnisse der Konzentration von FLA/(FLA+PYR), nach Herkunftssektoren und Jahreszeit (Sommer, Winter) getrennt gemittelt

<table>
<thead>
<tr>
<th>Herkunftssektoren</th>
<th>UFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>0.67</td>
</tr>
<tr>
<td>NE</td>
<td>0.73</td>
</tr>
<tr>
<td>S</td>
<td>0.76</td>
</tr>
<tr>
<td>UD</td>
<td>0.74</td>
</tr>
<tr>
<td>NW</td>
<td>0.62</td>
</tr>
<tr>
<td>NE</td>
<td>0.73</td>
</tr>
<tr>
<td>S</td>
<td>0.72</td>
</tr>
<tr>
<td>UD</td>
<td>0.76</td>
</tr>
</tbody>
</table>
6.1.4. OCP
Für alle Herkunftsgebiete wurden meist 26-28 Organochlorpestizide in der Luft nachgewiesen, auch wenn für einige Verbindungen in manchen Zeiträumen Konzentrationen nur wenig über der Nachweisgrenze gefunden wurden.

Die mittleren γ-HCH Konzentrationen für die drei Herkunftsgebiete (18-21 pg/m³) unterscheiden sich kaum (Abbildung 21), auch wenn in manchen Messzeiträumen für das Gebiet NE signifikant höhere Werte gefunden wurden.

Abbildung 21: Vergleich der Immissionskonzentration von γ-HCH während aller Messzeiträume getrennt für die drei Herkunftsgebiete

Betrachtet man die Verhältnisse von α-HCH/γ-HCH, so unterscheiden sich diese zwischen den Jahreszeiten, außer für das Gebiet NW, nur geringfügig (Tabelle 15). Geringe Werte deuten dabei auf permanent frisch emittiertes γ-HCH hin (Wang et al., 2006, Scheyer et al., 2005), höhere α-HCH/γ-HCH Verhältnisse (>1) deuten dagegen auf ältere, antransportierte Luftmassen hin (Sanusi et al., 2000).

Tabelle 15: Verhältnis der α-HCH/γ-HCH-Konzentration, nach Herkunftssektoren und Jahreszeit (Sommer, Winter) getrennt gemittelt

UFS	NW	0.71
	NE	0.70
	S	0.65
	UD	0.57

Die jahreszeitlichen Unterschiede für die OCP-Konzentrationen in der Luft sind im gesamten Zeitraum ähnlich; meist werden für alle Sektoren im Sommer höhere Konzentrationen gefunden als im Winter (Abbildung 22).
Abbildung 22: Konzentrationsverhältnisse Sommer/Winter für die Sektoren einzeln gemittelt (Median)

Für Hexachlorbenzol (HCB) dagegen, deutet sich für die beiden Herkunftsgebiete aus NW und NE eine schwache Zunahme der Immissionskonzentration im Gesamtmesszeitraum an (Abbildung 24).
Abbildung 24: Zeitlicher Verlauf der Hexachlorbenzol-Konzentration (HCB) in der Luft, getrennt für die Herkunftsgebiete NW, NE und S

Alle dargestellten Konzentrationen sind Mittelwerte über durchschnittlich dreimonatige Messperioden. Es fällt auf, dass die gemessenen γ-HCH-Konzentrationen in Bereichen liegen, wie sie auch an anderen abgelegenen (Arktis) oder auch städtischen und ländlichen Bereichen in tieferen Lagen bereits vor mehreren Jahren gefunden wurden (Sanusi et al., 2006; Scheyer et al., 2005; Tuduri et al., 2006). Gleiches trifft auch für die gemessenen HCB-Konzentrationen zu (Sanusi et al, 2006).

Für die Zukunft erscheint es sinnvoll, parallel oder alternativ zu der Trennung nach Herkunftsgebieten die Probzeiträume auf einen Monat zu verkürzen.
6.2. Depositionsmessungen an der UFS

Im Projektzeitraum MONARPOP/POPALP (Mai 2005 bis August 2010) konnten an der UFS Schneefernerhaus (UFS) insgesamt 17 Messperioden (7 im Sommer, 10 im Winter) mit durchschnittlich 112-tägiger Sammelzeit realisiert werden. In den Sommernessperioden lagen die Temperaturen im Mittel bei etwa 3.5°C und in den Winternessperioden bei etwa -4.7°C (Tabelle 16).

Tabelle 16: Messzeiträume, Niederschlagsmenge und Lufttemperatur an der UFS Schneefernerhaus

<table>
<thead>
<tr>
<th>Sammelzeitraum</th>
<th>Tage*</th>
<th>NS#</th>
<th>TT°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mai 05-Sep 05</td>
<td>105</td>
<td>931.1</td>
<td>4.6</td>
</tr>
<tr>
<td>Sep 05-März 06</td>
<td>189</td>
<td>1222.6</td>
<td>-5.3</td>
</tr>
<tr>
<td>März 06-Jul 06</td>
<td>119</td>
<td>942.3</td>
<td>-0.2</td>
</tr>
<tr>
<td>Jul 06-Nov 06</td>
<td>119</td>
<td>715.3</td>
<td>4.4</td>
</tr>
<tr>
<td>Nov 06-Feb 07</td>
<td>106</td>
<td>794.8</td>
<td>-4.0</td>
</tr>
<tr>
<td>Feb 07-Jun 07</td>
<td>119</td>
<td>931.7</td>
<td>-0.7</td>
</tr>
<tr>
<td>Jun 07-Okt 07</td>
<td>106</td>
<td>1000.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Okt 07-Jan 08</td>
<td>102</td>
<td>816.5</td>
<td>-5.0</td>
</tr>
<tr>
<td>Jan 08-Apr 08</td>
<td>79</td>
<td>583.7</td>
<td>-6.4</td>
</tr>
<tr>
<td>Apr 08-Jul 08</td>
<td>118</td>
<td>980.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Jul 08-Nov 08</td>
<td>99</td>
<td>526.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Nov 08-März 09</td>
<td>126</td>
<td>1093.9</td>
<td>-9.5</td>
</tr>
<tr>
<td>März 09-Mai09</td>
<td>57</td>
<td>479.5</td>
<td>-3.9</td>
</tr>
<tr>
<td>Mai 09-Okt 09</td>
<td>113</td>
<td>695.0</td>
<td>5.4</td>
</tr>
<tr>
<td>Okt 09-Jan 10</td>
<td>102</td>
<td>849.3</td>
<td>-6.1</td>
</tr>
<tr>
<td>Jan 10-Apr 10</td>
<td>92</td>
<td>275.7</td>
<td>-8.8</td>
</tr>
<tr>
<td>Apr 10-Jul 10</td>
<td>97</td>
<td>922.5</td>
<td>2.3</td>
</tr>
</tbody>
</table>

* Anzahl der Sammeltage; # Niederschlagssumme im Messzeitraum in mm (l/m²); ° Mittelwert der Lufttemperatur im Messzeitraum (°C); rot Sommernesszeiträume, blau Winternesszeiträume

Die Unterschiede der mittleren Niederschlagsmengen in den Sommer- und Winternessperioden sind gering. In den Winternessperioden fallen etwa 90% der Niederschläge als Schnee, in den Sommernessperioden liegt der Anteil des Schnees bei etwa 50%.

Aufgrund einiger technischer Defekte (Heizungsausfall, Glasbruch) und lokaler Baumaßnahmen liegen nicht für alle Sammelperioden Depositionsproben vor.

6.2.1. PCDD/F

Die mittleren Depositionsraten über den gesamten Messzeitraum (Mediane) für die Summen der tetra-, penta-, hexa-, hepta- und oktachlorierten Dioxine und Furane sowie die Summe der 2,3,7,8 Isomere, getrennt für die Sommer und Wintermessperioden, sind in Abbildung 26 dargestellt. Sieht man von TCDD ab, so wurden dabei stets im Winter die höheren Depositionsraten gefunden.

Das Homologenprofil für die Deposition zeigt nicht das typische „mittlere Umweltmuster“, wie es für die Immissionskonzentration beobachtet wird. Der Anteil der Furane bleibt fast konstant. Der Anteil der Dioxine nimmt von den TCDD zum OCDD stark zu (Abbildung 27). Diese Profile sind typisch für die atmosphärische Deposition (Hagenmaier et al., 1994) und sind ein charakteristisches Merkmal für Verbrennungsprozesse als Quelle (Ogura et al., 2001b).

Abbildung 27: Mittlere Homologenprofile der PCDD/F-Depositionsraten über den gesamten Zeitraum (2005-2010) getrennt für die Sommer- und Wintermessperioden

Abbildung 28: Zeitlicher Verlauf der Depositionsraten für die Summe der Dioxine und Furane für den gesamten Messzeitraum 2005-2010
Im betrachteten Zeitraum zeigt sich eine Abnahme der Depositionsraten, die für die Summe der Dioxine stärker ausgeprägt ist als für die Summe der Furane (Abbildung 28). Auch der zeitliche Verlauf der giftigsten Kongenere, der Gruppe der 2,3,7,8-substituierten Dioxine und Furane, zeigt über den Gesamtzeitraum eine leichte Abnahme der Depositionsraten, die im Winter meist stärker ausgeprägt ist als im Sommer (Abbildung 29). Die gemessenen Gesamtdepositionsaten - dargestellt ist der TEQ-Wert (Abbildung 30) - zeigen ähnlich wie die Summe der 2,3,7,8-Isomere sehr geringe Werte in 2010. Möglicherweise deutet sich hier ein negativer Trend an.

Abbildung 29: Zeitlicher Verlauf der Depositionsraten für die Summe der 2,3,7,8-substituierten Kongenere an allen drei Standorten für den gesamten Messzeitraum 2005-2010

Abbildung 30: Zeitlicher Verlauf der Gesamtdepositionsaten der PCDD/F an allen drei Standorten für den gesamten Messzeitraum 2005-2010
An der UFS wurden im Sommer mittlere Gesamtdepositionsraten der PCDD/PCDF von 1.6 und im Winter von 1.9 pg WHO-TEQ/m²Tag gefunden. Diese Werte sind vergleichbar mit den mittleren Depositionsraten, die das LfU an den DBS Augsburg und Kulmbach von Mai 2002 bis März 2003 mit jeweils 1.7 pg WHO-TEQ/m²Tag gemessen hatte (Körner et al., 2006). An der DBS Grassau/Chiemsee wurden im vergleichbaren Zeitraum August 2002 bis April 2003 jedoch höhere Depositionsraten gefunden (Median: 5.2 pg WHO-TEQ/m²Tag); Grassau liegt deutlich näher an möglichen Quellen (Hausfeuerung, Verkehr).

6.2.2. PCB

In Abbildung 31 sind die mittleren Depositionsraten (Mediane) für die analysierten PCB-Kongenere, getrennt für die Sommer und Wintermessperioden, an allen drei Stationen dargestellt. Für die meisten PCB werden an der UFS im Sommer höhere Raten beobachtet als im Winter, im Mittel etwa 50%.

Abbildung 31: Vergleich der mittleren Depositionsraten (Mediane) für die gemessenen PCB-Kongenere, getrennt für die Sommer- und Wintermesszeiträume, 2005-2010

Insgesamt ist für den Zeitraum zwischen 2005 und 2010 kein signifikanter zeitlicher Trend für die Depositionsraten einzelner PCB-Kongenere zu erkennen. Vergleicht man die Mediane der einzelnen Kongenere, getrennt berechnet für die Zeiträume 2005-2007 und 2008-2010 (maximal 8 bzw. 9 Messperioden), so zeigen die Indikator-PCB an der UFS einen leichten Rückgang zwischen 4 und 28%, im Mittel um 24%. Ein Rückgang der Depositionsraten um bis zu 30% wurde an der UFS auch für einige dioxinähnliche PCB (118, 156, 167 und 189) bestimmt.

Die Angabe von Toxizitätsäquivalenten scheint aufgrund der geringen Anzahl an nachgewiesenen Kongeneren und infolge vorhandener technisch bedingter Datenlücken jedoch nicht sinnvoll.
Abbildung 32: Zeitlicher Verlauf der Depositionsraten für die Summen der Indikator-, Mono-ortho- und Non-ortho PCB für den gesamten Messzeitraum 2005-2010 (Ordinate logarithmisch)

Tabelle 17: Depositionsraten für 6 Indikator-PCB an der UFS im Vergleich zu Messergebnissen aus der Literatur (alle Angaben in ng/m²Tag)

<table>
<thead>
<tr>
<th></th>
<th>Sommer (Min/Max)</th>
<th>Winter (Min/Max)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UFS</td>
<td>0.4-9.7</td>
<td>1.0-8.1</td>
<td>Alpen</td>
</tr>
<tr>
<td>Itatiaia (BRA)*</td>
<td>1.3-1.7</td>
<td>5.6-16.3*</td>
<td>Naturreservat</td>
</tr>
<tr>
<td>Volta Redonda (BRA)*</td>
<td>8.6-16.3</td>
<td>3.4-62.6*</td>
<td>Stadt</td>
</tr>
<tr>
<td>Lagune von Venedig (I)**</td>
<td>0.7-31.9</td>
<td>0.1-3.9</td>
<td>beeinflusst („impact sites“) unbeflussst („remote sites“)</td>
</tr>
<tr>
<td>Ostseegel (16 Stationen)*</td>
<td>1.2-5.6/17.9 (Mediane/Max)</td>
<td>küstennah</td>
<td></td>
</tr>
<tr>
<td>Gossenkölesee**</td>
<td>3.3 (Mittel)</td>
<td>Alpen (2400 m ü NN)</td>
<td></td>
</tr>
<tr>
<td>Alpenvorland und Nordbayern (3 Stationen) ##</td>
<td>38 - 40 (Mediane)</td>
<td>Stadt und Land</td>
<td></td>
</tr>
</tbody>
</table>

* de Souza Pereira et al., 2007, ** Rossini et al., 2005, # Agrell et a., 2002, oo Carrera et al., 2002
Körner et al., 2006

Für die Summe der dioxinähnlichen PCB ermittelten Castro-Jiménez et al. (2008) in Ispra, Nähe Lago Maggiore (Italien), PCB-Depositionsraten von etwa 5.4 ng/m²Tag. An den DBS Augsburg, Kulmbach
und Grassau ermittelte das LfU 2002/03 mit 3.4, 3.8 und 4.5 ng/m²Tag etwas niedrigere Medianwerte (Körner et al. 2006). An der UFS liegen diese Werte bei 0.1-0.5 ng/m²Tag und somit deutlich niedriger.

Interessant ist auch der Vergleich der in den Jahren 2005-2010 in den Alpen im Niederschlag gemessenen PCB-Konzentrationen (\(\sum \) Indikator-PCB 0.1-4.9 ng/l) mit früheren Messungen aus anderen Gebieten. Messungen aus dem Jahr 1992 in Südschweden zeigen etwa vergleichbare Konzentrationen von 1.2-6.1 ng/l, für die Summe von insgesamt 43 PCB (Backe et al., 2002). Diese Ergebnisse liegen im ähnlichen Bereich wie Messungen von Agrell et al. (2002), der in den Jahren 1990 bis 1993 für 16 Stationen rund um die Ostsee Jahresmittelwerte von 0.8-10.7 ng/l für die Summe von 51 PCB-Kongeneren ermittelte. Auch diese liegen im Konzentrationsbereich der heute in den Alpen gemessenen Werte. Bei der Analyse von Spänen der Eiskernbohrungen auf dem 4200 m hoch gelegenen Lys-Gletscher in den italienischen Alpen (Monte Rosa Gebiet), fanden Villa et al. (2006) Konzentrationen von 0.6-2.0 ng/l für die Summe der Tri-, Tetra-, Penta- und Hexa-PCB. Carrera et al. (2001) bestimmten für die Indikator-PCB (+Kongener 118) in 2400 m Höhe im Schnee in den Alpen (Gossenköllesee) Konzentrationen von 0.73 ng/l. Auch in Schneeproben des Aconcagua-Gletschers (Anden) auf 6200 m ü NN wurden für die Summe von 13 PCB Konzentrationen bis zu 0.43 ng/l nachgewiesen (Quiroz et al., 2009).

6.2.3. PAH

Analysiert wurden die sogenannten EPA-PAH, die 16 bezüglich ihrer Umweltbelastung wichtigsten polyzyklischen aromatischen Kohlenwasserstoffe. Die mittleren Depositionsraten für die einzelnen PAH sind in Abbildung 33 getrennt für Sommer und Winter dargestellt.

Abbildung 33: Mediane der Depositionsraten (ng/m²Tag) für die 16 EPA-PAH, getrennt gemittelt über die Sommer- und Wintemesszeiträume zwischen 2005 und 2010.

Der jahreszeitliche Verlauf der PAH-Deposition ist an der UFS sehr unterschiedlich ausgeprägt. So werden für die beiden flüchtigsten PAH, NAP und ACY, im Sommer fast 50% geringere, für ANT, BaA und BaP dagegen bis zu 75% höhere Werte gemessen. Die gemessenen Werte stimmen mit früheren Messungen aus der Schweiz (in Motelay-Bassei et al., 2003) recht gut überein. Ergebnisse von Gocht et al. (2007) zeigen für den süddeutschen Raum im Sommer geringere Depositionsraten als im Winter.
Verbrennungsprozesse und Emissionen unverbrannter Erdölprodukte sind die Hauptquellen von PAH in der Umwelt. Basierend auf der unterschiedlichen thermodynamischen Stabilität der einzelnen PAH wird deshalb diskutiert, dass man aus bestimmten Verhältnissen einiger PAH zueinander, Aussagen zu möglichen Quellen der einzelnen PAH erhalten kann. So wird das Verhältnis FLA/PYR zur Unterscheidung von PAH aus pyrolytischen (>1, Verbrennung ÖI, Benzin, Holz, Kohle) und petrogenetischen (<1, Kohleverbrunnung) Prozessen herangezogen (Motelay-Massei et al., 2007). Diese Verhältnisse liegen an der UFS >1, ein jahreszeitlicher Unterschied wurde für dieses Verhältnis nicht gefunden.

Auch das Verhältnis der leichten PAH (LW-PAH, Molgewicht <202) zu den schweren (HW-PAH, MG>202) wird zur Unterscheidung der PAH-Quellen diskutiert, wobei in der Literatur keine definitiven Grenzwerte zu finden sind (Wang et al., 2006). Diese Verhältnisse liegen an der UFS bei etwa 2.5. Während hohe Verhältnisse auch auf reine PAH-Emissionen (keine Verbrennungsprozesse) zurückgeführt werden könnten, deuten geringe Werte auf Verbrennungsprozesse bei hohen Temperaturen, wie Autoabgase hin. Durch die Vielzahl der potentiellen Verbrennungsprozesse und die kaum quantifizierbare Vermischung und Verteilung der PAH in der Atmosphäre ist eine exakte Quellzuordnung an emittentenfernem Standorten, wie sich für die UFS zeigt, offensichtlich nicht eindeutig möglich.

Vergleicht man die im Niederschlag gemessenen PAH-Konzentrationen mit Messungen in deutlich quellnäheren Gebieten wie Le Havre, Rouen und Evreux in Frankreich, zeigen sich ähnliche Größenordnungen sowohl für die Mittelwerte (Mediane) als auch die Maxima (Tabelle 18).

| Tabelle 18: PAH-Konzentrationen im Niederschlag (ng/l) und Literaturvergleich |
|-----------------|-----------------|-----------------|
| UFS | Median ng/l | Maximum ng/l | Median/Maximum ng/l |
| NAP | 8.96 | 42.9 | |
| ACY | 0.70 | 0.8 | |
| ACE | 0.64 | 4.0 | 0.6-1.9/14.1 |
| FLU | 2.26 | 12.8 | 1.2-3.0/28.1 |
| PHE | 11.10 | 51.0 | 6-14/143 |
| ANT | 0.88 | 3.1 | 0.2-0.6/12.6 |
| FLA | 13.48 | 67.0 | 5-14/284 |
| PYR | 7.75 | 72.5 | 4-13/228 |
| BaA | 1.94 | 15.0 | 1-3/116 |
| CHR | 6.32 | 25.2 | 2.5-8/223 |
| BbF | 4.77 | 19.8 | 1.5-5/178 |
| BkF | 1.82 | 9.1 | 0.7-2.4/88 |
| BaP | 2.65 | 15.1 | 0.8-2/134 |
| IcdP | 2.10 | 10.6 | 0.9-2/110 |
| BghiP | 2.74 | 12.5 | 1.2-4.5/115 |
| DahA | 0.46 | 2.4 | 0.1-0.4/13 |

* Motelay-Bassei et al., 2003 und 2007
Die Depositionsraten für die Summe der gemessenen PAH (ohne NAP) liegen an der UFS zwischen 90 und 1700 ng/m²Tag. Ähnliche Werte (200-1400 ng/m²Tag) wurden in den Jahren 2000/2001 an drei süddeutschen Standorten gefunden (Gocht et al., 2007). Messungen aus Südcnina ergaben für die Summe von 15 PAH (ohne NAP) mittlere Depositionsraten zwischen 60-795 ng/m²Tag (Li et al., 2010).

6.2.4. OCP

Wie auch in der Luft, konnten in den meisten Depositionsproben insgesamt 28 Organochlorpestizide (inklusive Isomere) nachgewiesen werden. Die mittleren Depositionsraten sind in Abbildung 34 getrennt für Sommer- und Wintermessperioden dargestellt.

Abbildung 34: Mediane der Depositionsraten (pg/m²Tag) für alle nachgewiesenen OCP, getrennt gemittelt über alle 7 Sommer- und alle 10 Wintermesszeiträume zwischen 2005 und 2010. Um für einen ersten vergleichenden Überblick die sehr unterschiedlichen Depositionsraten aller OCP darstellen zu können wurde die Ordinate logarithmisch skaliert.

Für die Summe der DDT wurden an der UFS in den jeweiligen Messperioden von ungefähr 3 Monaten zwischen 0.32-28.2 pg/m²Tag gemessen. Erstaunlich ist, dass die Maxima dabei in Bereichen liegen, wie sie auch in Südcnina (21.9-30.1 pg/m²Tag) gefunden wurden (Li et al., 2010).

Die jahreszeitlichen Unterschiede sind für die einzelnen OCP nicht einheitlich. So werden an der UFS für die HCH, Pentachlorbenzol und Endosulfan im Sommer deutlich höhere Depositionsraten als im Winter gefunden; für die DDT-Gruppe und einige andere ist es umgekehrt(Abbildung 35).
Abbildung 35: Verhältnis der mittleren Depositionsraten (verwendet wurde der Median) zwischen der Deposition im Sommer und im Winter

Abbildung 36: Zeitlicher Verlauf der Depositionsraten für γ-HCH an allen drei alpinen Standorten (2005-2010)

In Abbildung 37 ist der zeitliche Verlauf der Depositionsraten für die Summen der DDT-, DDD- und DDE-Isomere im gesamten Messzeitraum dargestellt. Ganz besonders auffällig sind zwei extreme DDT-Werte im Jahr 2006 an der UFS sowie die ebenfalls auffällig hohen Werte für dessen
Abbauprodukte DDD und DDE. Eine Ursache für die bis zu mehr als 10-fach höheren Depositionsraten für DDT kann jedoch nicht identifiziert werden.

Abbildung 38: Zeitlicher Verlauf der Depositionsraten für Endosulfan-I und -II

Das Verhältnis Endosulfan-I/Endosulfan-II ist im Sommer und Winter unterschiedlich. So werden im Sommer Isomerenverhältnisse von 1-1,3 und im Winter von 1,8-3,1 beobachtet. Möglicherweise sind meteorologische Einflüsse dafür verantwortlich.

Ein Rückgang der Depositionsraten wird auch für trans-Chlordan beobachtet (Abbildung 39), während er für cis-Chlordan weniger markant ist und für oxy-Chlordan keine Tendenz erkennbar ist. Dabei ist der abnehmende Trend im Sommer stets etwas stärker ausgeprägt als im Winter.

<table>
<thead>
<tr>
<th></th>
<th>2005-2007</th>
<th>2008-2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-HCH</td>
<td>1784.0</td>
<td>1623.7</td>
</tr>
<tr>
<td>γ-HCH</td>
<td>6627.0</td>
<td>5311.5</td>
</tr>
<tr>
<td>Hexachlorbenzol</td>
<td>63.7**</td>
<td>230.2</td>
</tr>
<tr>
<td>DDT</td>
<td>1686 (1196)*</td>
<td>1023</td>
</tr>
<tr>
<td>DDD</td>
<td>85 (67)*</td>
<td>98</td>
</tr>
<tr>
<td>DDE</td>
<td>374 (327)*</td>
<td>377</td>
</tr>
<tr>
<td>trans-Chlordan</td>
<td>35.1</td>
<td>29.6</td>
</tr>
<tr>
<td>Endosulfan-I</td>
<td>8235.7</td>
<td>2411.7</td>
</tr>
<tr>
<td>Endosulfan-II</td>
<td>6129.7</td>
<td>1702.6</td>
</tr>
</tbody>
</table>

* ohne einen Extremwert im Jahr 2006, ** Datenlücken

Messungen von OCP an drei Standorten in der Niigata-Ebene (Japan) aus dem Jahr 2001, einem städtischen, einem landwirtschaftlich geprägten und einem unbeinflussten Standort auf einem Berg (634m ü NN) in der Nähe (Takase et al., 2003), zeigen Konzentrationen im Niederschlagswasser, die mit den an der UFS gemessenen Werten etwa vergleichbar sind (Tabelle 20).

Tabelle 20: Konzentration von α-HCH, HCB und 4,4'-DDT im Niederschlag (pg/l) im Vergleich mit Messungen aus der Niigata-Ebene (Japan). Dargestellt sind jeweils Minimum-Maximum.

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>UFS</th>
<th>Takase</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-HCH</td>
<td>105-1163</td>
<td>273-2385</td>
</tr>
<tr>
<td>HCB</td>
<td>8-453</td>
<td>22-1225</td>
</tr>
<tr>
<td>4,4’-DDT</td>
<td>28-3415</td>
<td>13-948</td>
</tr>
</tbody>
</table>

Tabelle 21: Konzentrationsbereiche von γ-HCH und Endosulfan-I im Schneeschmelzwasser im Vergleich zu den Konzentrationen im Niederschlagswasser (alle Angaben in ng/l)

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Kanada, Norwegen</th>
<th>UFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ-HCH</td>
<td>0.17-5.61*</td>
<td>0.27-1.37</td>
</tr>
<tr>
<td>Endosulfan-I</td>
<td>0.14-1.59*</td>
<td>0.27-2.30</td>
</tr>
<tr>
<td>Endosulfan-II</td>
<td>0.007-0.037*</td>
<td>0.02-1.76</td>
</tr>
</tbody>
</table>

* in Weber et al., 2010

6.2.5. PBDE

Analysiert wurden insgesamt 8 drei- bis zehnfach bromierte Diphenylether, die als Einzelkongenere bestimmt wurden. Die mittleren Depositionsraten (Mediane) sind in Abbildung 41 getrennt für Sommer- und Wintermessperioden dargestellt. Im Winter wurden stets höhere Depositionsraten gefunden als im Sommer.

Abbildung 41: Mediane der Depositionsraten (pg/m²Tag) für alle nachgewiesenen PBDE, jeweils getrennt gemittelt über alle Sommer- und alle Wintermesszeiträume zwischen 2005 und 2010. Um einen Vergleich der Depositionsraten aller PBDE darstellen zu können wurde die Ordinate logarithmisch skaliert.

Betrachtet man die prozentualen Anteile der einzelnen Kongenere, so überwiegt fast in allen Messzeiträumen das dekabromierte BDE 209 mit über 95%. Diese hohen Kongenanteile des BDE 209 sind zu erwarten und auf die entsprechend hohen Verwendungsmengen des technischen DecaBDE zurückzuführen. In Tabelle 22 ist eine zusammenfassende Übersicht der gemessenen Depositionsraten für das Kongener 209 und die Summe der anderen 7 analysierten Kongenere gegeben.

Tabelle 22: Zusammenfassung der gemessenen Depositionsraten. Minimum-Maximum und (Median) in ng/m²Tag

<table>
<thead>
<tr>
<th>Kongener</th>
<th>Minimum-Maximum (Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDE 209</td>
<td>9-233 (60.9)</td>
</tr>
<tr>
<td>Σ 7PBDE (ohne 209)</td>
<td>0.2-37.4 (0.6)</td>
</tr>
</tbody>
</table>

Industriestandort mit Asphalt und Betonherstellung (ohne PBDE-Emissionen) und einem ländlichen Standort, ergaben Depositionsraten für die Summe von PBDE (ohne 209) sowie BDE 209 von 21.3/63.8, 7.0/14.7 sowie 0.8/4.3 ng/m²Tag (ter Schure et al., 2004). 2005 wurden am Lago Maggiore (Italien) für die Summe von 7 PBDE (dieselben wie in POPALP) und für BDE 209 Depositionsraten von 9.1 und 8.5 ng/m²Tag gefunden (Mariani et al., 2008). All diese Werte liegen in der gleichen Größenordnung, wie sie an der UFS und am Weißfluhjoch gemessen wurden.

Auch Messungen an einem städtischen Standort in Kyoto (Japan) zeigen für die Summe von 7 PBDE (wie POPALP ohne 209) jahreszeitlich unterschiedliche Werte zwischen 1.3-30 ng/m²Tag (Hayakawa et al., 2004). Deutlich höhere Depositionsraten fanden Li et al. (2010) in Südchina. Im Pearl River Delta wurden für das BDE 209 Werte zwischen 90-5400 ng/m²Tag gemessen.

6.3. Vertikalgradienten der meteorologischen Parameter im NP BG

Abbildung 43: Temperaturverlauf der Jahresmittelwerte (1950-2008) in Salzburg-Flughafen
Abbildung 44: Temperaturverlauf (2000-2010) in Salzburg-Flughafen

6.3.1. Vertikalprofil der Lufttemperatur

Die Auswertungen der Temperaturmessungen am Vertikaltransect Berchtesgaden zeigen die Verteilung der Temperatur in Abhängigkeit von der Höhe. (Abbildung 45 und Abbildung 46). Dargestellt sind Monatsmittelwerte der Lufttemperatur, gemessen an den SPMD-Hütten, welche bestandesnah aufgebaut wurden und primär zur Auswertung und Interpretation der Passivsammlerdaten und der Daten aus den Nadelanalysen herangezogen werden sollen. Den Ansprüchen an meteorologische und klimatologische Messstationen konnten diese Standorte nicht immer gerecht werden, was bei der Interpretation der Daten zu berücksichtigen ist.

Abbildung 45: Monatsmittelwerte der Lufttemperatur am Messtransekt Berchtesgaden für das Jahr 2009
Abbildung 46: Monatsmittelwerte der Lufttemperatur am Messtransek Berchtesgaden für das Jahr 2010

Um Aussagen zu Inversionen durchführen zu können, wurden zu allererst entsprechend der beschriebenen Methode die einzelnen Messpunkte auf ihre Vergleichbarkeit für inversionsfreie Zeiträume untersucht und dann für jede Station auf Grund einer linearen Regressionsanalyse die Korrekturfaktoren auf Monatsbasis berechnet (Tabelle 23); infolge der abweichenden Exposition wurde auf die Einbeziehung von BG 5 verzichtet. Die stärksten Korrekturen wurden für BG 0 (634 m ü NN) und BG 2 errechnet. Die mikroklimatologischen Eigenheiten der einzelnen Messpunkte an Strahlungstagen konnten durch das Verfahren allerdings nicht berücksichtigt werden.

Tabelle 23: Korrekturfaktoren (°C) für die einzelnen Messpunkte

<table>
<thead>
<tr>
<th>Station</th>
<th>BG 0</th>
<th>BG 1</th>
<th>BG 2</th>
<th>BG 3</th>
<th>BG 4</th>
<th>BG 6</th>
<th>BG 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>[m ü NN]</td>
<td>634</td>
<td>800</td>
<td>956</td>
<td>1215</td>
<td>1339</td>
<td>1492</td>
<td>1680</td>
</tr>
<tr>
<td>Jan</td>
<td>-0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Feb</td>
<td>-0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Mrz</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>Apr</td>
<td>-0.4</td>
<td>0.2</td>
<td>0.4</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>Mai</td>
<td>-0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.1</td>
</tr>
<tr>
<td>Jun</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Jul</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Aug</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sep</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Okt</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.1</td>
</tr>
</tbody>
</table>
Mit den Korrekturfaktoren wurden alle Halbstundenwerte neu berechnet und die Stationstemperaturen am Höhenprofil untereinander monatsweise verglichen (Abbildung 47). Die Drängung der Monatskurven in den Wintermonaten und im Spätherbst deutet auf die Existenz von Inversionen hin; die größte vertikale Durchmischung und die größte vertikale Temperaturabnahme findet im Mai und Juli statt. Die Schwerpunkte der Überschneidung der Monatsverläufe treten im Talbereich und in mittleren Höhen auf.

Abbildung 47: Jahresgang der Temperaturen am Höhenprofil

In Abbildung 48 ist zu erkennen, wie oft die Halbstundenwerte der Temperatur zwischen jeweils zwei Messpunkten zunehmen. So treten im November im unteren Talbereich an mehr als 50% der Zeit Temperaturzunahmen auf; im Mai wird das an weniger als 20% aller Fälle beobachtet. Ein zweites Häufigkeitsmaximum tritt im mittleren bis oberen Hangbereich auf, was auf die Existenz einer sog. „warmen Hangzone“ hindeutet.
Abbildung 48: Inversionshäufigkeiten zwischen den einzelnen Messpunkten

In Abbildung 49 sind die Lapse rates für das komplette Jahr 2010, für vermeintlich inversionsfreie Vertikalverläufe und für Perioden mit Inversionen eingetragen. Während für inversionsfreie Perioden ein einheitlicher Temperaturgradient von \(-0,71\) bis \(-0,58°C/100\) m errechnet wird, liegt ein erheblicher Jahresgang für die Gesamtdaten bzw. für die Inversionszeiträume vor.

Abbildung 49: Inversionshäufigkeiten zwischen Tal und höchstem Messpunkt

6.3.2. Vergleich der Thermo/Hygrobutton mit meteorologischen Stationen

Hinsichtlich der Qualitätssicherung der eingesetzten Messgeräte wurden die Daten der Messungen mit dem Thermo/Hygrobutton (an den SPMD-Hütten, 3 Werte pro Stunde) von BG 1 direkt mit den entsprechenden Werten einer herkömmlichen meteorologischen Station (PT 100, 30-Minutenmittelwerte) an BG 1 verglichen. Es zeigte sich eine sehr gute Übereinstimmung. Auch für die Messung der relativen Luftfeuchte waren die Abweichungen gering.
Tabelle 24: Vergleich der Monatsmittelwerte der Lufttemperatur am Messpunkt BG 1

<table>
<thead>
<tr>
<th>Monat</th>
<th>Meteorologische Station BG 1 (PT 100)</th>
<th>SPMD–Hütte (außen) (Thermo/Hygrobutton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mai</td>
<td>13.3</td>
<td>13.3</td>
</tr>
<tr>
<td>Juni</td>
<td>13.3</td>
<td>13.4</td>
</tr>
<tr>
<td>Juli</td>
<td>16.0</td>
<td>16.1</td>
</tr>
<tr>
<td>August</td>
<td>16.8</td>
<td>17.0</td>
</tr>
<tr>
<td>September</td>
<td>13.3</td>
<td>13.5</td>
</tr>
</tbody>
</table>

6.3.3. Messung der Innentemperaturen in den SPMD-Hütten

Tabelle 25: Mittlere monatliche Differenz der Hütteninnentemperatur und der Lufttemperatur im Sommer 2009

<table>
<thead>
<tr>
<th>Monat</th>
<th>BG 1</th>
<th>BG 2</th>
<th>BG 3</th>
<th>BG 4</th>
<th>BG 5</th>
<th>BG 6</th>
<th>BG 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mai</td>
<td>0.35</td>
<td>0.16</td>
<td>0.08</td>
<td>0.18</td>
<td>0.28</td>
<td>0.12</td>
<td>0.34</td>
</tr>
<tr>
<td>Juni</td>
<td>0.48</td>
<td>0.19</td>
<td>0.15</td>
<td>0.22</td>
<td>0.26</td>
<td>0.16</td>
<td>0.34</td>
</tr>
<tr>
<td>Juli</td>
<td>0.47</td>
<td>0.13</td>
<td>0.11</td>
<td>0.17</td>
<td>0.19</td>
<td>0.17</td>
<td>0.36</td>
</tr>
<tr>
<td>August</td>
<td>0.42</td>
<td>0.07</td>
<td>0.11</td>
<td>0.15</td>
<td>0.17</td>
<td>0.19</td>
<td>0.51</td>
</tr>
<tr>
<td>September</td>
<td>0.38</td>
<td>0.21</td>
<td>0.17</td>
<td>0.22</td>
<td>0.28</td>
<td>0.24</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Eine markante Überhitzung der Hütten, welche die SPMD-Messung beeinflussen könnte, wurde auch an Sommertagen, mit einem Maximum der Lufttemperatur größer 25°C, nicht festgestellt (Abbildung 50). Nur für wenige Stunden am späten Nachmittag lag die Hütteninnentemperatur an einigen Standorten mehr als ein Grad über der Lufttemperatur. So zeigt sich die abendliche Besonnung des Messpunktes BG 1, deutlich schwächer ausgeprägt auch am Messpunkt BG 4. Die Außenlufttemperaturfühler an den Messpunkten BG 2, BG 3 und BG 5 liegen dagegen morgens in der Sonne, was für einige Stunden zu leicht höheren Temperaturen als im noch kühleren Hütteninneren führt.

Zur Berechnung der Diffusions- und Permeationsraten der SPMDs konnte deshalb stets die permanent gemessene Außenlufttemperatur herangezogen werden.
6.4. Vertikalprofil der Immission im NP BG – SPMD-Messungen

Zur Untersuchung der Vertikalstruktur der Immission von POPs mittels Passivsamlern wurden an allen 7 Messhöhen SPMDs exponiert. Die Expositionszeiträume wurden so gewählt, dass sowohl jahreszeitliche Variationen als auch mögliche Parallelen zur Belastung der Nadeln mit POPs untersucht werden konnten.

Tabelle 26: Expositionszeiträume und Mittelwerte der Lufttemperatur [°C]

<table>
<thead>
<tr>
<th>Höhe [m ü NN]</th>
<th>BG 1</th>
<th>BG 2</th>
<th>BG 3</th>
<th>BG 4</th>
<th>BG 5</th>
<th>BG 6</th>
<th>BG 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5.09-28.10.09</td>
<td>13.6</td>
<td>12.3</td>
<td>11.1</td>
<td>10.9</td>
<td>10.0</td>
<td>10.2</td>
<td>9.6</td>
</tr>
<tr>
<td>29.10.09-8.5.10</td>
<td>1.9</td>
<td>0.1</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-1.6</td>
<td>-0.9</td>
<td>-1.4</td>
</tr>
<tr>
<td>11.5.09-8.5.10</td>
<td>7.4</td>
<td>5.9</td>
<td>4.9</td>
<td>4.9</td>
<td>3.8</td>
<td>4.4</td>
<td>3.8</td>
</tr>
</tbody>
</table>

6.4.1. PCB

Dies bedeutet, dass diese Verbindungen bevorzugt an Teilchen absorbiert werden und zu gravitativem, bzw. nassen Depositionsprozessen neigen. Sie stehen somit in der Gasphase für die SPMD-Aufnahme nur geringfügig zur Verfügung. Mono-ortho-PCB wurden in SPMDs zehnmal weniger als die Indikator-PCB akkumuliert. Entlang des Höhenprofils wurden die hochmolekularen PCB innerhalb dieser Gruppe nur im Bereich der Bestimmungsgrenze oder gar nicht detektiert (z.B. PCB 189; nicht in der Tabelle).

und Abbildung 53). Im Allgemeinen sind für alle PCB, die hier analysiert wurden, die SPMD Konzentrationen im ersten Halbjahr höher als jene im zweiten Halbjahr der Probenahme.

Tabelle 27: PCB Konzentrationen (pg PCB/g Triolein) in Berchtesgaden (BG) am Höhenprofil. SP1: Erstes ½ Jahr Expositionszeit, SP2: zweites ½ Jahr Expositionszeit und SP3: 1 Jahr Expositionszeit (n.n.= nicht nachweisbar)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>½ Jahr Expositionszeit 10.05.2009-28.10.2009 (Sommer auf Winterzeit)</th>
<th>½ Jahr Expositionszeit 28.10.2009-08.05.2010 (Winter auf Sommerzeit)</th>
<th>1 Jahr Expositionszeit 10.05.2009-08.05.2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SP1-BG-1</td>
<td>SP1-BG-2</td>
<td>SP1-BG-3</td>
</tr>
<tr>
<td>PCB #28</td>
<td>725</td>
<td>1042</td>
<td>965</td>
</tr>
<tr>
<td>PCB #52</td>
<td>734</td>
<td>1270</td>
<td>1156</td>
</tr>
<tr>
<td>PCB #101</td>
<td>562</td>
<td>1831</td>
<td>1572</td>
</tr>
<tr>
<td>PCB #138</td>
<td>184</td>
<td>959</td>
<td>1035</td>
</tr>
<tr>
<td>PCB #153</td>
<td>394</td>
<td>1578</td>
<td>1651</td>
</tr>
<tr>
<td>PCB #180</td>
<td>71.2</td>
<td>462</td>
<td>359</td>
</tr>
<tr>
<td>PCB #77</td>
<td>44,5</td>
<td>65,1</td>
<td>47,2</td>
</tr>
<tr>
<td>PCB #81</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>PCB #105</td>
<td>8,3</td>
<td>108</td>
<td>162</td>
</tr>
<tr>
<td>PCB #114</td>
<td>7,0</td>
<td>n.n.</td>
<td>9,7</td>
</tr>
<tr>
<td>PCB #118</td>
<td>9,7</td>
<td>n.n.</td>
<td>5,5</td>
</tr>
<tr>
<td>PCB #156</td>
<td>9,7</td>
<td>n.n.</td>
<td>57,5</td>
</tr>
<tr>
<td>PCB #157</td>
<td>9,7</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>PCB #167</td>
<td>9,7</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
</tbody>
</table>

Verbindung SP1-BG-1 SP1-BG-2 SP1-BG-3 SP1-BG-4 SP1-BG-5 SP1-BG-6 SP1-BG-7 SP2-BG-1 SP2-BG-2 SP2-BG-3 SP2-BG-4 SP2-BG-5 SP2-BG-6 SP2-BG-7 SP3-BG-1 SP3-BG-2 SP3-BG-3 SP3-BG-4 SP3-BG-5 SP3-BG-6 SP3-BG-7
Abbildung 52: Akkumulierte PCB (pg PCB #28 g⁻¹ Triolein) im SPMD in Berchtesgaden am Höhenprofil. Zwei ½ Jahr Exposisionszeit und einjährige Exposisionszeit.

Abbildung 53: Akkumulierte PCB (pg PCB #153 g⁻¹ Triolein) im SPMD in Berchtesgaden am Höhenprofil. 2,5 Jahre Exposisionszeit und eine einjährige Exposisionszeit.

Dies kann sehr wahrscheinlich auf die verschiedenen Temperaturbereiche während der beiden halbjährigen Perioden zurückgeführt werden: Die mittleren Temperaturen für die erste und zweite Periode betrugen 10 bzw. 0°C. Dies könnte bedeuten, dass die in dieser ersten Periode höheren PCB-Konzentrationen in der Luft, zu höheren SPMD-Aufnahmen führten. Allerdings können saisonale Schwankungen der Konzentrationen in der Luft nicht vollständig die verschiedenen SPMD-Sequestrierungen in den Halbjahres-Perioden erklären. Die Unterschiede lassen sich vermutlich auf Schwankungen der Umweltbedingungen (vor allem der Temperatur), die die SPMD Aufnahme beeinflussen, zurückführen. Frühere Studien mit SPMD in Berggebieten zeigten, dass Aufnahmeraten für SPMD, die bei Temperaturen oberhalb von -4°C exponiert waren, höher waren als entsprechende unterhalb dieses Schwellenwertes (Levy et al., 2009). Betrachtet man die SPMD Aufnahme der jährlichen Exposisionszeit unter Berücksichtigung der akkumulierten Menge und der Tendenz mit der Höhe, so wird deutlich, dass diese der SPMD Aufnahme des ersten Halbjahrs der Exposisionszeit ähnelt (rote und blau Linien).

In der vorliegenden Studie war die mittlere Umgebungstemperatur unmittelbar vor der SPMD-Probenahme in den beiden halbjährigen Perioden ähnlich. Weiterhin wird, wenn die Akkumulation einer Chemikalie in der linearen Aufnahmephase des SPMD liegt, die Akkumulation in der jährlichen Expositionszeit voraussichtlich als die Summe der beiden Halbjahresperioden erscheinen: die Addition der roten und grünen Linien in den Figuren sollte mit der blauen Linie übereinstimmen. Mit dem Ziel, diesen Punkt zu visualisieren, ist eine gepunktete Linie hinzugefügt worden, die die Summe der beiden Halbjahresperioden repräsentiert.

6.4.2. PAH

Aus der Gruppe der PAH waren Benzo(j)fluoranthen und Benzo(b)fluoranthen schwer zu analysieren. Das Verteilungsmuster der Sequestrierung zeigt, dass im SPMD niedermolekulare PAH überwiegen. Zwei wichtige Faktoren zusammen mit der Tatsache, dass niedermolekulare PAH in höheren Konzentrationen in der Luft als hochmolekulare PAH vorliegen, bestimmen dieses Muster. Zunächst beinhalten sich niedermolekulare PAH überwiegend in der Gasphase und sind besser verfügbar für die Aufnahme in den SPMDs. Zweitens sinkt die Oktanol-Löslichkeit von PAH grundsätzlich mit der Zunahme der Molmasse (Martin et al., 2007), was zu einer geringeren Affinität für die Triolein-Phase führt und damit die Sequestrierung von hochmolekularen PAH verringert.

Diese Verbindungen befinden sich wahrscheinlich im Gleichgewicht zwischen Atmosphäre (Gasphase) und Passivsammler, aber es ist nicht zu erwarten, dass die akkumulierte Menge am Ende der beiden Halbjahresperioden ähnlich wird, selbst wenn vergleichbare Temperatur- und Umweltbedingungen am Ende der beiden Halbjahresperioden vorherrschen. Dies ist vor allem auf den sehr unterschiedlichen atmosphärischen Input in den beiden untersuchten Halbjahresperioden zurückzuführen.

Im Rahmen eines früheren Projekts (BAYPOP), in dem Luftdaten aus dem Bayerischen Wald untersucht wurden, wurden die niedermolekularen PAH (Acenaphtylen, Acenaphthen, Fluoren, Phenanthren, Anthracen, Fluoranthen) gemessen und lagen im Durchschnitt bei 80% der gesamten erfassten PAH in Aktivsammlern bzw. 86% im SPMD.

Der Anteil dieser Verbindungen entspricht in der aktuellen Studie rund 98% der gesamten PAH. Obwohl PAH eindeutige Muster entlang des Höhenprofils aufzeigte und deutliche Unterschiede in den
Tabelle 28: PAH-Konzentrationen in SPMDs (pg PAH g⁻¹ Triolein) am Höhenprofil Berchtesgaden

<table>
<thead>
<tr>
<th>½ Jahr Expositionszeit 10.05.2009-28.10.2009</th>
<th>SP1-BG-1</th>
<th>SP1-BG-2</th>
<th>SP1-BG-3</th>
<th>SP1-BG-4</th>
<th>SP1-BG-5</th>
<th>SP1-BG-6</th>
<th>SP1-BG-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACY</td>
<td>6424</td>
<td>3379</td>
<td>n.n.</td>
<td>767</td>
<td>186</td>
<td>401</td>
<td>n.a.</td>
</tr>
<tr>
<td>ACE</td>
<td>2047</td>
<td>46</td>
<td>297</td>
<td>491</td>
<td>146</td>
<td>726</td>
<td>n.a.</td>
</tr>
<tr>
<td>FLU</td>
<td>27213</td>
<td>12461</td>
<td>14030</td>
<td>20689</td>
<td>11795</td>
<td>13614</td>
<td>7123</td>
</tr>
<tr>
<td>PHE</td>
<td>103826</td>
<td>28295</td>
<td>37237</td>
<td>42929</td>
<td>13349</td>
<td>58044</td>
<td>2501</td>
</tr>
<tr>
<td>ANT</td>
<td>2774</td>
<td>9441</td>
<td>1450</td>
<td>295</td>
<td>n.n.</td>
<td>670</td>
<td>24.6</td>
</tr>
<tr>
<td>FLA</td>
<td>8644</td>
<td>1094</td>
<td>3108</td>
<td>2400</td>
<td>n.n.</td>
<td>14427</td>
<td>n.n.</td>
</tr>
<tr>
<td>PYR</td>
<td>1894</td>
<td>194</td>
<td>362</td>
<td>1209</td>
<td>n.n.</td>
<td>399</td>
<td>n.n.</td>
</tr>
<tr>
<td>BaA</td>
<td>145</td>
<td>54.3</td>
<td>127</td>
<td>n.n.</td>
<td>n.n.</td>
<td>26.2</td>
<td>n.n.</td>
</tr>
<tr>
<td>CHR</td>
<td>484</td>
<td>n.n.</td>
<td>352</td>
<td>152.3</td>
<td>n.n.</td>
<td>8.5</td>
<td>n.n.</td>
</tr>
<tr>
<td>BbF*</td>
<td>69.2</td>
<td>325</td>
<td>61.1</td>
<td>251</td>
<td>n.n.</td>
<td>634</td>
<td>8.8</td>
</tr>
<tr>
<td>BkF</td>
<td>156</td>
<td>161</td>
<td>133</td>
<td>72</td>
<td>n.n.</td>
<td>127</td>
<td>n.n.</td>
</tr>
<tr>
<td>BaP</td>
<td>127</td>
<td>0</td>
<td>260</td>
<td>76</td>
<td>n.n.</td>
<td>107</td>
<td>472</td>
</tr>
<tr>
<td>lcdP</td>
<td>117</td>
<td>0</td>
<td>201</td>
<td>n.n.</td>
<td>n.n.</td>
<td>245</td>
<td>n.n.</td>
</tr>
<tr>
<td>BghiP</td>
<td>72.5</td>
<td>6.0</td>
<td>109.0</td>
<td>n.n.</td>
<td>n.n.</td>
<td>401</td>
<td>84.6</td>
</tr>
<tr>
<td>DahA</td>
<td>6.3</td>
<td>27.2</td>
<td>26.2</td>
<td>n.n.</td>
<td>n.n.</td>
<td>52.7</td>
<td>n.n.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>½ Jahr Expositionszeit 28.10.2009-08.05.2010</th>
<th>SP2-BG-1</th>
<th>SP2-BG-2</th>
<th>SP2-BG-3</th>
<th>SP2-BG-4</th>
<th>SP2-BG-5</th>
<th>SP2-BG-6</th>
<th>SP2-BG-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACY</td>
<td>4027</td>
<td>2195</td>
<td>1318</td>
<td>1144</td>
<td>850</td>
<td>481</td>
<td>484</td>
</tr>
<tr>
<td>ACE</td>
<td>699</td>
<td>1650</td>
<td>1068</td>
<td>1182</td>
<td>702</td>
<td>1353</td>
<td>n.n.</td>
</tr>
<tr>
<td>FLU</td>
<td>35692</td>
<td>45105</td>
<td>34797</td>
<td>41237</td>
<td>23792</td>
<td>31002</td>
<td>18253</td>
</tr>
<tr>
<td>PHE</td>
<td>182927</td>
<td>122036</td>
<td>61293</td>
<td>102703</td>
<td>40755</td>
<td>88377</td>
<td>21500</td>
</tr>
<tr>
<td>ANT</td>
<td>1866</td>
<td>1304</td>
<td>210</td>
<td>831</td>
<td>529</td>
<td>631</td>
<td>319</td>
</tr>
<tr>
<td>FLA</td>
<td>20059</td>
<td>14500</td>
<td>4306</td>
<td>10618</td>
<td>4187</td>
<td>10652</td>
<td>1880</td>
</tr>
<tr>
<td>PYR</td>
<td>342</td>
<td>1988</td>
<td>n.n.</td>
<td>487</td>
<td>1588</td>
<td>1502</td>
<td>n.n.</td>
</tr>
<tr>
<td>BaA</td>
<td>166</td>
<td>94.7</td>
<td>28.5</td>
<td>151.7</td>
<td>131.8</td>
<td>n.n.</td>
<td>27.6</td>
</tr>
<tr>
<td>CHR</td>
<td>279</td>
<td>591.1</td>
<td>209.6</td>
<td>n.n.</td>
<td>712.9</td>
<td>n.n.</td>
<td>63.8</td>
</tr>
<tr>
<td>BbF*</td>
<td>1085</td>
<td>597</td>
<td>609</td>
<td>144</td>
<td>448</td>
<td>n.n.</td>
<td>324</td>
</tr>
<tr>
<td>BkF</td>
<td>215</td>
<td>174</td>
<td>210</td>
<td>73.3</td>
<td>229</td>
<td>129</td>
<td>105</td>
</tr>
<tr>
<td>BaP</td>
<td>45.2</td>
<td>106</td>
<td>263</td>
<td>129</td>
<td>148</td>
<td>n.n.</td>
<td>124</td>
</tr>
<tr>
<td>lcdP</td>
<td>433</td>
<td>243</td>
<td>492</td>
<td>294</td>
<td>273</td>
<td>n.n.</td>
<td>237</td>
</tr>
<tr>
<td>BghiP</td>
<td>11.0</td>
<td>187</td>
<td>541</td>
<td>145</td>
<td>77</td>
<td>n.n.</td>
<td>66</td>
</tr>
<tr>
<td>DahA</td>
<td>n.n.</td>
<td>n.n.</td>
<td>96.2</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Jahr Expositionszeit 10.05.2009-08.05.2010</th>
<th>SP3-BG-1</th>
<th>SP3-BG-2</th>
<th>SP3-BG-3</th>
<th>SP3-BG-4</th>
<th>SP3-BG-5</th>
<th>SP3-BG-6</th>
<th>SP3-BG-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACY</td>
<td>n.a.</td>
<td>2041</td>
<td>1366</td>
<td>857</td>
<td>1283</td>
<td>4213</td>
<td>279</td>
</tr>
<tr>
<td>ACE</td>
<td>n.a.</td>
<td>2140</td>
<td>821</td>
<td>1240</td>
<td>649</td>
<td>573</td>
<td>146</td>
</tr>
<tr>
<td>FLU</td>
<td>n.a.</td>
<td>35485</td>
<td>28380</td>
<td>26874</td>
<td>26572</td>
<td>30602</td>
<td>22856</td>
</tr>
<tr>
<td>PHE</td>
<td>169906</td>
<td>141110</td>
<td>59998</td>
<td>75715</td>
<td>85051</td>
<td>140937</td>
<td>26383</td>
</tr>
<tr>
<td>ANT</td>
<td>2734</td>
<td>1530</td>
<td>n.n.</td>
<td>1209</td>
<td>820</td>
<td>33600</td>
<td>3845</td>
</tr>
<tr>
<td>FLA</td>
<td>10448</td>
<td>12897</td>
<td>4712</td>
<td>7353</td>
<td>3186</td>
<td>17300</td>
<td>2141</td>
</tr>
<tr>
<td>PYR</td>
<td>1446</td>
<td>901</td>
<td>759</td>
<td>1256</td>
<td>372</td>
<td>2336</td>
<td>n.n.</td>
</tr>
<tr>
<td>BaA</td>
<td>98</td>
<td>73</td>
<td>n.n.</td>
<td>103</td>
<td>63</td>
<td>166</td>
<td>29</td>
</tr>
<tr>
<td>CHR</td>
<td>378</td>
<td>786</td>
<td>237</td>
<td>158</td>
<td>131</td>
<td>348</td>
<td>n.n.</td>
</tr>
<tr>
<td>BbF*</td>
<td>497</td>
<td>705</td>
<td>413</td>
<td>406</td>
<td>298</td>
<td>654</td>
<td>319</td>
</tr>
<tr>
<td>BkF</td>
<td>94.9</td>
<td>196</td>
<td>137</td>
<td>96.1</td>
<td>70.4</td>
<td>348</td>
<td>92</td>
</tr>
<tr>
<td>BaP</td>
<td>53.9</td>
<td>179</td>
<td>n.n.</td>
<td>128</td>
<td>65.4</td>
<td>110</td>
<td>n.n.</td>
</tr>
<tr>
<td>lcdP</td>
<td>39.2</td>
<td>173</td>
<td>20</td>
<td>225</td>
<td>221</td>
<td>282</td>
<td>n.n.</td>
</tr>
<tr>
<td>BghiP</td>
<td>34.0</td>
<td>46.1</td>
<td>207</td>
<td>46.8</td>
<td>96.5</td>
<td>n.n.</td>
<td>143</td>
</tr>
<tr>
<td>DahA</td>
<td>74.5</td>
<td>46.0</td>
<td>288</td>
<td>13.6</td>
<td>16.3</td>
<td>220.8</td>
<td>65.8</td>
</tr>
</tbody>
</table>
Abbildung 54: Akkumuliertes Phenanthren (pg PHE g⁻¹ Triolein) im SPMD in Berchtesgaden am Höhenprofil. Zwei Halbjahre Expositionszeit und eine einjährige Expositionszeit.

Abbildung 55: Akkumuliertes Fluoranthen (pg FLA g⁻¹ Triolein) im SPMD in Berchtesgaden am Höhenprofil. Zwei Halbjahre Expositionszeit und einjährige Expositionszeit.

6.4.3. OCP

Ein Grund für deren höhere Aufnahme in der Sommerzeit sind zweifelsohne die höheren Konzentrationen in der Luft. Darüber hinaus wird die Sampler-Aufnahme stark von der Umgebungstemperatur beeinflusst, was zu niedrigeren Aufnahmeraten bei Temperaturen unter 4°C und damit zu einer geringen Akkumulation im zweiten Halbjahr der Expositionszeit führt (grüne Linie). Obwohl frühere Studien Unterschiede entlang von Höhenprofilen gefunden haben (Daly et al., 2007, Tremolada et al., 2008), konnten hier keine klaren Tendenzen hinsichtlich der Profile festgestellt werden.
Tabelle 29: OCP-Konzentrationen in SPMDs (pg Pestizide g⁻¹ Triolein) am Höhenprofil
Berchtesgadens (BG). SP1: erstes ½ Jahr, SP2: zweites ½ Jahr, SP3: 1 Jahr. Expositionszeit. n.n. = nicht nachweisbar; n.a. = nicht analysierbar.

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>SP1-BG-1</th>
<th>SP1-BG-2</th>
<th>SP1-BG-3</th>
<th>SP1-BG-4</th>
<th>SP1-BG-5</th>
<th>SP1-BG-6</th>
<th>SP1-BG-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-HCH</td>
<td>1656</td>
<td>1629</td>
<td>1932</td>
<td>2612</td>
<td>2234</td>
<td>1629</td>
<td>1871</td>
</tr>
<tr>
<td>β-HCH</td>
<td>168</td>
<td>120</td>
<td>167</td>
<td>154</td>
<td>107</td>
<td>120</td>
<td>95</td>
</tr>
<tr>
<td>γ-HCH</td>
<td>3662</td>
<td>4114</td>
<td>3352</td>
<td>3163</td>
<td>1592</td>
<td>4114</td>
<td>1312</td>
</tr>
<tr>
<td>δ-HCH</td>
<td>105</td>
<td>115</td>
<td>87.4</td>
<td>96.9</td>
<td>56.6</td>
<td>115</td>
<td>53.0</td>
</tr>
<tr>
<td>ε-HCH</td>
<td>36.4</td>
<td>55</td>
<td>n.n.</td>
<td>86.5</td>
<td>n.n.</td>
<td>55</td>
<td>37.7</td>
</tr>
<tr>
<td>Pentachlorbenzo</td>
<td>913</td>
<td>822</td>
<td>946</td>
<td>1033</td>
<td>975</td>
<td>822</td>
<td>757</td>
</tr>
<tr>
<td>Hexachlorbenzo</td>
<td>10424</td>
<td>12847</td>
<td>15477</td>
<td>14916</td>
<td>12475</td>
<td>12847</td>
<td>9707</td>
</tr>
<tr>
<td>Hexachlorbenzo</td>
<td>1533</td>
<td>1099</td>
<td>1302</td>
<td>1703</td>
<td>1284</td>
<td>1099</td>
<td>1098</td>
</tr>
<tr>
<td>Octachlorstyro</td>
<td>166</td>
<td>276</td>
<td>337</td>
<td>446</td>
<td>214</td>
<td>354</td>
<td>268</td>
</tr>
<tr>
<td>γ,4,4’-DDT</td>
<td>944</td>
<td>743</td>
<td>1651</td>
<td>557</td>
<td>125</td>
<td>743</td>
<td>356</td>
</tr>
<tr>
<td>2,4’,4’-DDT</td>
<td>123</td>
<td>467</td>
<td>134</td>
<td>630</td>
<td>233</td>
<td>467</td>
<td>386</td>
</tr>
<tr>
<td>4,4’,4’-DDE</td>
<td>914</td>
<td>986</td>
<td>1130</td>
<td>1063</td>
<td>427</td>
<td>986</td>
<td>480</td>
</tr>
<tr>
<td>2,4’,4’-DDE</td>
<td>127</td>
<td>64</td>
<td>92</td>
<td>98</td>
<td>34.1</td>
<td>64.1</td>
<td>61</td>
</tr>
<tr>
<td>trans-Chlordan</td>
<td>77</td>
<td>107</td>
<td>132</td>
<td>143</td>
<td>92</td>
<td>158</td>
<td>97</td>
</tr>
<tr>
<td>cis-Chlordan</td>
<td>255</td>
<td>245</td>
<td>380</td>
<td>435</td>
<td>268</td>
<td>354</td>
<td>268</td>
</tr>
<tr>
<td>oxy-Chlordan</td>
<td>206</td>
<td>199</td>
<td>276</td>
<td>249</td>
<td>185</td>
<td>196</td>
<td>151</td>
</tr>
<tr>
<td>cis-Heptachlorepoxid</td>
<td>513</td>
<td>515</td>
<td>658</td>
<td>619</td>
<td>399</td>
<td>542</td>
<td>410</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>330</td>
<td>770</td>
<td>1257</td>
<td>1332</td>
<td>764</td>
<td>879</td>
<td>800</td>
</tr>
<tr>
<td>Endrin</td>
<td>13.8</td>
<td>n.n.</td>
<td>68.0</td>
<td>46.3</td>
<td>n.n.</td>
<td>n.n.</td>
<td>37.8</td>
</tr>
<tr>
<td>α-Endosulfan</td>
<td>3612</td>
<td>3688</td>
<td>4581</td>
<td>4279</td>
<td>2860</td>
<td>4974</td>
<td>3919</td>
</tr>
<tr>
<td>β-Endosulfan</td>
<td>207</td>
<td>357</td>
<td>408</td>
<td>500</td>
<td>214</td>
<td>411</td>
<td>339</td>
</tr>
<tr>
<td>Mirex</td>
<td>28.4</td>
<td>56.1</td>
<td>51.3</td>
<td>63.3</td>
<td>33.7</td>
<td>65.5</td>
<td>51.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>SP2-BG-1</th>
<th>SP2-BG-2</th>
<th>SP2-BG-3</th>
<th>SP2-BG-4</th>
<th>SP2-BG-5</th>
<th>SP2-BG-6</th>
<th>SP2-BG-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-HCH</td>
<td>552</td>
<td>634</td>
<td>525</td>
<td>652</td>
<td>528</td>
<td>589</td>
<td>615</td>
</tr>
<tr>
<td>β-HCH</td>
<td>44.7</td>
<td>54.4</td>
<td>34.1</td>
<td>36.0</td>
<td>n.a.</td>
<td>46.1</td>
<td>58.4</td>
</tr>
<tr>
<td>γ-HCH</td>
<td>n.n.</td>
<td>585</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
<td>339</td>
</tr>
<tr>
<td>δ-HCH</td>
<td>49.1</td>
<td>55.2</td>
<td>29.4</td>
<td>44.8</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>ε-HCH</td>
<td>n.n.</td>
<td>17.8</td>
<td>13.7</td>
<td>13.9</td>
<td>n.n.</td>
<td>n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>Pentachlorbenzo</td>
<td>820</td>
<td>1397</td>
<td>1721</td>
<td>1702</td>
<td>1610</td>
<td>1427</td>
<td>1629</td>
</tr>
<tr>
<td>Hexachlorbenzo</td>
<td>11561</td>
<td>14850</td>
<td>16602</td>
<td>17684</td>
<td>12448</td>
<td>15749</td>
<td>9247</td>
</tr>
<tr>
<td>Pentachloranisol</td>
<td>837</td>
<td>1332</td>
<td>1126</td>
<td>1354</td>
<td>870</td>
<td>1098</td>
<td>866</td>
</tr>
<tr>
<td>Octachlorstyro</td>
<td>214</td>
<td>353</td>
<td>281</td>
<td>372</td>
<td>228</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>γ,4,4’-DDT</td>
<td>227</td>
<td>408</td>
<td>143</td>
<td>221</td>
<td>226</td>
<td>337</td>
<td>325</td>
</tr>
<tr>
<td>2,4’,4’-DDT</td>
<td>190</td>
<td>253</td>
<td>136</td>
<td>208</td>
<td>186</td>
<td>274</td>
<td>230</td>
</tr>
<tr>
<td>4,4’,4’-DDE</td>
<td>387</td>
<td>489</td>
<td>322</td>
<td>546</td>
<td>270</td>
<td>651</td>
<td>322</td>
</tr>
<tr>
<td>2,4’,4’-DDE</td>
<td>50.8</td>
<td>64.5</td>
<td>49.9</td>
<td>73.1</td>
<td>44.4</td>
<td>65.9</td>
<td>64.0</td>
</tr>
<tr>
<td>trans-Chlordan</td>
<td>87.6</td>
<td>104</td>
<td>82.3</td>
<td>98.7</td>
<td>98.7</td>
<td>0.0</td>
<td>128</td>
</tr>
<tr>
<td>cis-Chlordan</td>
<td>158</td>
<td>207</td>
<td>202</td>
<td>276</td>
<td>158</td>
<td>266</td>
<td>323</td>
</tr>
<tr>
<td>oxy-Chlordan</td>
<td>74.5</td>
<td>78.2</td>
<td>83.6</td>
<td>99</td>
<td>80</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>cis-Heptachlorepoxid</td>
<td>174</td>
<td>194</td>
<td>179</td>
<td>218</td>
<td>194</td>
<td>243</td>
<td>249</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>264</td>
<td>579</td>
<td>402</td>
<td>574</td>
<td>447</td>
<td>563</td>
<td>581</td>
</tr>
<tr>
<td>Endrin</td>
<td>n.n.</td>
<td>29</td>
<td>n.n.</td>
<td>39</td>
<td>n.n.</td>
<td>n.n.</td>
<td>38</td>
</tr>
<tr>
<td>α-Endosulfan</td>
<td>1936</td>
<td>2830</td>
<td>2332</td>
<td>3746</td>
<td>3126</td>
<td>4570</td>
<td>5421</td>
</tr>
<tr>
<td>β-Endosulfan</td>
<td>43.7</td>
<td>304</td>
<td>124</td>
<td>71.1</td>
<td>57.6</td>
<td>274</td>
<td>201</td>
</tr>
<tr>
<td>Mirex</td>
<td>42.0</td>
<td>32.6</td>
<td>24.2</td>
<td>51.4</td>
<td>32.7</td>
<td>n.n.</td>
<td>51.2</td>
</tr>
</tbody>
</table>
Tabelle 30: OCP-Konzentrationen in SPMDs (pg Pestizide g⁻¹ Triolein) am Höhenprofil Berchtesgadens (BG). SP3: 1 Jahr Exposionszeit. n.n. = nicht nachweisbar n.a.= nicht analysierbar.

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>SP3-BG-1</th>
<th>SP3-BG-2</th>
<th>SP3-BG-3</th>
<th>SP3-BG-4</th>
<th>SP3-BG-5</th>
<th>SP3-BG-6</th>
<th>SP3-BG-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-HCH</td>
<td>1768</td>
<td>2148</td>
<td>1948</td>
<td>1685</td>
<td>2309</td>
<td>1788</td>
<td>2169</td>
</tr>
<tr>
<td>β-HCH</td>
<td>196</td>
<td>257</td>
<td>169</td>
<td>193</td>
<td>181</td>
<td>151</td>
<td>217</td>
</tr>
<tr>
<td>γ-HCH</td>
<td>3767</td>
<td>4535</td>
<td>2533</td>
<td>3248</td>
<td>2878</td>
<td>2457</td>
<td>3723</td>
</tr>
<tr>
<td>δ-HCH</td>
<td>153</td>
<td>318</td>
<td>92.7</td>
<td>112</td>
<td>107</td>
<td>126</td>
<td>126</td>
</tr>
<tr>
<td>ε-HCH</td>
<td>76.1</td>
<td>100</td>
<td>43.6</td>
<td>0</td>
<td>58.4</td>
<td>65.8</td>
<td>51.4</td>
</tr>
<tr>
<td>Pentachlorbenzol</td>
<td>n.a.</td>
<td>1296</td>
<td>1643</td>
<td>1241</td>
<td>1929</td>
<td>1396</td>
<td>1643</td>
</tr>
<tr>
<td>Hexachlorbenzol</td>
<td>14777</td>
<td>15308</td>
<td>19246</td>
<td>14451</td>
<td>18106</td>
<td>18710</td>
<td>11800</td>
</tr>
<tr>
<td>Pentachloranisol</td>
<td>1540</td>
<td>1684</td>
<td>1526</td>
<td>1396</td>
<td>1526</td>
<td>1295</td>
<td>1461</td>
</tr>
<tr>
<td>Octachlorstyrol</td>
<td>453</td>
<td>618</td>
<td>487</td>
<td>671</td>
<td>469</td>
<td>574</td>
<td>526</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>1324</td>
<td>1581</td>
<td>730</td>
<td>1039</td>
<td>690</td>
<td>599</td>
<td>1133</td>
</tr>
<tr>
<td>2,4'-DDT</td>
<td>755</td>
<td>970</td>
<td>571</td>
<td>826</td>
<td>563</td>
<td>560</td>
<td>950</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>1291</td>
<td>1340</td>
<td>1148</td>
<td>1248</td>
<td>704</td>
<td>1194</td>
<td>727</td>
</tr>
<tr>
<td>Endrin</td>
<td>172</td>
<td>155</td>
<td>117</td>
<td>132</td>
<td>164</td>
<td>115</td>
<td>189</td>
</tr>
<tr>
<td>trans-Chlordan</td>
<td>158</td>
<td>209</td>
<td>204</td>
<td>154</td>
<td>228</td>
<td>202</td>
<td>242</td>
</tr>
<tr>
<td>cis-Chlordan</td>
<td>388</td>
<td>517</td>
<td>470</td>
<td>397</td>
<td>480</td>
<td>504</td>
<td>645</td>
</tr>
<tr>
<td>oxy-Chlordan</td>
<td>256</td>
<td>310</td>
<td>248</td>
<td>211</td>
<td>355</td>
<td>222</td>
<td>339</td>
</tr>
<tr>
<td>cis-Heptachlorepoxid</td>
<td>657</td>
<td>926</td>
<td>732</td>
<td>719</td>
<td>924</td>
<td>673</td>
<td>918</td>
</tr>
<tr>
<td>Fielder</td>
<td>984</td>
<td>1378</td>
<td>1123</td>
<td>1331</td>
<td>1129</td>
<td>1196</td>
<td>936</td>
</tr>
<tr>
<td>Octachlorstyrol</td>
<td>42.2</td>
<td>55.4</td>
<td>52.5</td>
<td>54.4</td>
<td>49.7</td>
<td>48.8</td>
<td>73.3</td>
</tr>
<tr>
<td>α-Endosulfan</td>
<td>4923</td>
<td>7314</td>
<td>6153</td>
<td>7946</td>
<td>6885</td>
<td>7388</td>
<td>12371</td>
</tr>
<tr>
<td>β-Endosulfan</td>
<td>375</td>
<td>680</td>
<td>455</td>
<td>617</td>
<td>482</td>
<td>316</td>
<td>960</td>
</tr>
<tr>
<td>Mirex</td>
<td>45.0</td>
<td>84.3</td>
<td>58.2</td>
<td>86.9</td>
<td>83.9</td>
<td>87.2</td>
<td>114</td>
</tr>
</tbody>
</table>

Relative Anteil: ((Summe ½ Jahr Exposionszeiten)/1JahrExposionszeit)*100

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>SP3-BG-1</th>
<th>SP3-BG-2</th>
<th>SP3-BG-3</th>
<th>SP3-BG-4</th>
<th>SP3-BG-5</th>
<th>SP3-BG-6</th>
<th>SP3-BG-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-HCH</td>
<td>80</td>
<td>100</td>
<td>79</td>
<td>52</td>
<td>84</td>
<td>69</td>
<td>87</td>
</tr>
<tr>
<td>β-HCH</td>
<td>92</td>
<td>128</td>
<td>84</td>
<td>102</td>
<td>169</td>
<td>65</td>
<td>142</td>
</tr>
<tr>
<td>γ-HCH</td>
<td>105</td>
<td>157</td>
<td>76</td>
<td>103</td>
<td>181</td>
<td>48</td>
<td>226</td>
</tr>
<tr>
<td>δ-HCH</td>
<td>-</td>
<td>60</td>
<td>62</td>
<td>45</td>
<td>75</td>
<td>98</td>
<td>69</td>
</tr>
<tr>
<td>ε-HCH</td>
<td>67</td>
<td>59</td>
<td>60</td>
<td>44</td>
<td>73</td>
<td>58</td>
<td>62</td>
</tr>
<tr>
<td>Pentachlorbenzol</td>
<td>-</td>
<td>65</td>
<td>63</td>
<td>46</td>
<td>71</td>
<td>45</td>
<td>74</td>
</tr>
<tr>
<td>Hexachlorbenzol</td>
<td>119</td>
<td>104</td>
<td>79</td>
<td>82</td>
<td>106</td>
<td>128</td>
<td>94</td>
</tr>
<tr>
<td>Pentachloranisol</td>
<td>113</td>
<td>173</td>
<td>41</td>
<td>134</td>
<td>196</td>
<td>47</td>
<td>166</td>
</tr>
<tr>
<td>Octachlorstyrol</td>
<td>99</td>
<td>104</td>
<td>79</td>
<td>78</td>
<td>101</td>
<td>59</td>
<td>91</td>
</tr>
<tr>
<td>trans-Chlordan</td>
<td>94</td>
<td>115</td>
<td>81</td>
<td>56</td>
<td>113</td>
<td>73</td>
<td>101</td>
</tr>
<tr>
<td>cis-Chlordan</td>
<td>91</td>
<td>112</td>
<td>69</td>
<td>61</td>
<td>134</td>
<td>87</td>
<td>137</td>
</tr>
<tr>
<td>oxy-Chlordan</td>
<td>96</td>
<td>131</td>
<td>87</td>
<td>86</td>
<td>156</td>
<td>69</td>
<td>139</td>
</tr>
<tr>
<td>cis-Heptachlorepoxid</td>
<td>166</td>
<td>102</td>
<td>68</td>
<td>70</td>
<td>93</td>
<td>73</td>
<td>68</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>89</td>
<td>112</td>
<td>89</td>
<td>99</td>
<td>115</td>
<td>65</td>
<td>132</td>
</tr>
<tr>
<td>Endrin</td>
<td>150</td>
<td>103</td>
<td>85</td>
<td>108</td>
<td>177</td>
<td>34</td>
<td>178</td>
</tr>
</tbody>
</table>

Die SPMD verhalten sich somit nicht wie ein kinetischer Sampler (vgl. gestrichelte Linie mit blauer Linie), sind aber auch nicht im Gleichgewicht mit der Umgebungsluft. Im Gleichgewicht würden für die Winterhalbjahresperiode der Exposionszeiten (grüne Linie) ähnliche Mengen wie in der ganzzährigen Periode (blaue Linie) akkumuliert. Andererseits könnte jedoch auch eine sehr geringe Desorption der HCH - konträr zur Theorie - die Befunde erklären.
Abbildung 56: Akkumuliertes α-HCH (pg α-HCH g⁻¹ Triolein) in SPMD in Berchtesgaden entlang des Höhenprofils für zwei halbjährliche Expositionsperioden und eine jährliche Periode. Die gestrichelte Linie symbolisiert die Summe der beiden Halbjahresperioden.

In der Stoffgruppe der HCB, PeCB, Pentachloranisol und Oktachlorstyrene akkumulieren die höchsten Stoffmengen in den SPMDs. HCB und das assozierte PeCB haben eine hohe Affinität zur Gasphase und sind in der Atmosphäre global in größeren Mengen als viele andere Pestizide vorhanden. Diese Verbindungen mit Ausnahme der Oktachlorstyrene scheinen ein Gleichgewicht im SPMD in weniger als 6 Monaten Expositionszeit zu erreichen (siehe prozentuale Werte am Ende der Tabelle 30).

Abbildung 57: Akkumuliertes HCB (pg α-HCB g$^{-1}$ Triolein) in SPMD in Berchtesgaden entlang des Höhenprofils für zwei halbjährliche Expositionsperioden und eine jährliche Periode. Die gestrichelte Linie symbolisiert die Summe der beiden $\frac{1}{2}$ Jahres Perioden.

Für DDTs, Chlordane, Dieldrin und Endosulfane kann Folgendes festgestellt werden: Vor allem aufgrund der Temperaturdifferenz in den Halbjahresexpositionszeiten, wie sie bei den nachfolgend betrachteten Chemikaliengruppen mit mittlerem und hohem K_{ow} Wert beobachtet wurde, werden im Sommerhalbjahr höhere Akkumulationen erwartet.

Frühere Studien (Levy et al., 2009) zeigten die lineare Aufnahme für einige Verbindungen dieser Stoffgruppe in den SPMDs; die aktuellen Daten lassen dagegen eine endgültige Schlussfolgerung nicht zu (siehe Prozentsätze am Ende der Tabelle). Trotzdem sammelten sich während des ersten Halbjahres größere Mengen an als während der zweiten Periode, was den früheren Beobachtungen (MONARPOP) entsprach. Die Abbildung 58 zeigt die Verbindung dieser Gruppe, die die höchste Akkumulierung in den SPMDs aufweist.

Abbildung 58: Akkumuliertes α-Endosulfan (pg α-Endosulfan g$^{-1}$ Triolein) in SPMD in Berchtesgaden entlang des Höhenprofils für zwei halbjährige Expositionsperioden und für eine einjährige Expositionszeit. Die gestrichelte Linie symbolisiert die Summe der beiden $\frac{1}{2}$-jährigen Expositionen.
6.5. **Vertikalprofil der Bodenproben im NP BG**

Die Probenahme für die Bodenuntersuchungen in POPALP erfolgten im Durchschnitt etwa 30 Meter horizontal versetzt zu den Probenahmestellen im MONARPOP-Projekt. Ebenfalls verändert wurde die Horizonteinteilung. Im Rahmen von MONARPOP wurde nur die Humusschicht und der Mineralboden untersucht, während im Rahmen von POPALP sechs Horizonte unterschieden wurden (siehe Tabelle 31). Dabei entsprechen die ersten beiden Schichten, die Streuauflage und schwerpunktmäßig der O-Horizont, aus POPALP in erster Näherung der Humusschicht aus MONARPOP und die nächsten beiden Schichten, insbesondere der Ah-Horizont, dem Mineralboden. Insgesamt erwies sich die Trennung der Bodenschichten, insbesondere vor allem auf den steilen Flächen und höheren Messpunkten, mitunter als nicht ganz unproblematisch.

Tabelle 31: Kohlenstoffanteil (C-org [%]) im Boden entlang des Höhenprofils NP BG

<table>
<thead>
<tr>
<th></th>
<th>BG 1</th>
<th>BG 2</th>
<th>BG 3</th>
<th>BG 4</th>
<th>BG 5</th>
<th>BG 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-Horizont</td>
<td>40,9</td>
<td>40,7</td>
<td>49,7</td>
<td>40,0</td>
<td>47,1</td>
<td>49,7</td>
</tr>
<tr>
<td>Ah-Horizont</td>
<td>14,1</td>
<td>8,1</td>
<td>31,4</td>
<td>8,7</td>
<td>23,6</td>
<td>16,4</td>
</tr>
</tbody>
</table>

Tabelle 32: pH-Wert (CaCl₂) in den Horizonten der Böden entlang des Höhenprofils NP BG

<table>
<thead>
<tr>
<th></th>
<th>BG 1</th>
<th>BG 2</th>
<th>BG 3</th>
<th>BG 4</th>
<th>BG 5</th>
<th>BG 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Of+Oh</td>
<td>5,5</td>
<td>4,2</td>
<td>4,4</td>
<td>4,2</td>
<td>4,2</td>
<td>4,0</td>
</tr>
<tr>
<td>IAh</td>
<td>6,9</td>
<td>4,6</td>
<td>6,1</td>
<td>5,0</td>
<td>4,7</td>
<td>5,8</td>
</tr>
<tr>
<td>IBv-cCv</td>
<td>7,5</td>
<td>7,2</td>
<td>7,2</td>
<td>5,9</td>
<td>7,0</td>
<td>7,4</td>
</tr>
<tr>
<td>IcICv</td>
<td>7,8</td>
<td>7,6</td>
<td>7,5</td>
<td>7,5</td>
<td>7,5</td>
<td>7,6</td>
</tr>
<tr>
<td>IcICn</td>
<td>8,0</td>
<td>7,6</td>
<td>7,5</td>
<td>7,4</td>
<td>7,6</td>
<td>7,6</td>
</tr>
</tbody>
</table>

6.5.1. **PCDD/F und PCB**

Abbildung 59: 1234678-HpCDD am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP

Abbildung 60: OCDD am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP
Hinsichtlich der PCDD/F-Konzentrationen (Summe PCDD/F) wiesen im Vergleich zum Raum Berchtesgaden (BG 5: 394 ng/kg TS; in POPALP wohl deutlich höher) andere Standorte am nördlichen Alpenrand, insbesondere im Werdenfelser Land und in Ober- und Niederösterreich (bis 650 ng/kg TS), deutlich höhere Belastungen auf. Geringere Werte wurden in den Zentralalpen (<150 ng/kg TS) registriert (MONARPOP, 2008). Der Vergleich MONARPOP zu POPALP zeigt einen leicht positiven Trend bei den Konzentrationen im Boden.

Im gesamten Alpenraum, der in MONARPOP länderübergreifend untersucht wurde, schwankten für mittlere Höhen (z.B. BG 5) die Toxizitätsäquivalente zwischen 1.5 (Zentralalpen) und ca. 10 ng TEQ/kg TS (Alpenrand: Oberösterreich).
In Abbildung 63 ist die Summe aus den 6 Indikatorkongeneren PCB 28, PCB 52, PCB 101, PCB 138, PCB 153 und PCB 180 dargestellt; die PCB-Gesamtsumme kann näherungsweise aus den 6 Indikatorkongeneren * Faktor 5 abgeschätzt werden. Der Konzentrationsbereich für die Summe der 6 Indikator-PCB in MONARPOP lag alpenweit zwischen 3200 und 17200 ng/kg TS (BG 5: 8400 ng/kg TS) und in einem an quellenfernen Standorten 1993 durchgeführten österreichischen Vorläufersprojekt bei 200-7500 ng/kg TS (Weiß et al., 2000). Weiter westlich am oberbayerischen bzw. schwäbischen Alpenrand lagen in MONARPOP um ca. 50% höhere Konzentrationen im Humus vor als an BG 5.

Abbildung 63: Summe der 6 Indikator-PCB am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP

Abbildung 64: WHO-TEQ der PCB am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP

Vergleicht man die Ergebnisse aus MONARPOP und POPALP, so zeigt sich bei den PCDD/F und PCB in Talnähe vielfach mit der Zeit eine Abnahme, während im mittleren und oberen Hangbereich eine leichte Zunahme der Belastungen im Boden zu erkennen ist. In der Regel sind die PCB-Konzentrationen im Humus höher als im Mineralboden. Die Streu, die in POPALP eigens analysiert

6.5.2. Mikro-EROD-Bioassay

<table>
<thead>
<tr>
<th>Bodenprobenkennung</th>
<th>Horizont</th>
<th>Höhe (m ü NN)</th>
<th>EROD 24 Stunden TE-Wert (pg TCDD g⁻¹ trocken Boden)</th>
<th>EROD 72 Stunden TE-Wert (pg TCDD g⁻¹ trocken Boden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG 1-110509</td>
<td>L</td>
<td>797</td>
<td>4.2 ± 0.2 n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>BG 2-110509</td>
<td>L</td>
<td>974</td>
<td>7.2 ± 3.7 n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>BG 3-110509</td>
<td>L</td>
<td>1198</td>
<td>5.1 ± 1.6 n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>BG 4-110509</td>
<td>L</td>
<td>1334</td>
<td>5.0 ± 0.3 3.0 ± 0.2</td>
<td>3.0 ± 0.2</td>
</tr>
<tr>
<td>BG 5-110509</td>
<td>L</td>
<td>1421</td>
<td>3.7 ± 0.3 n.n.</td>
<td>n.n.</td>
</tr>
<tr>
<td>BG 6-110509</td>
<td>L</td>
<td>1505</td>
<td>12.5 ± 4.2 3.3 ± 0.4</td>
<td>3.3 ± 0.4</td>
</tr>
<tr>
<td>BG 1-110509</td>
<td>Of +</td>
<td>797</td>
<td>20.5 ± 3.2 10.2 ± 0.3</td>
<td>10.2 ± 0.3</td>
</tr>
<tr>
<td>BG 2-110509</td>
<td>Of</td>
<td>974</td>
<td>18.2 ± 7.7 7.6 ± 0.4</td>
<td>7.6 ± 0.4</td>
</tr>
<tr>
<td>BG 3-110509</td>
<td>Of +</td>
<td>1198</td>
<td>89 ± 18 15.7 ± 4.4</td>
<td>15.7 ± 4.4</td>
</tr>
<tr>
<td>BG 4-110509</td>
<td>Of</td>
<td>1334</td>
<td>24.7 ± 11.5 6.0 ± 0.3</td>
<td>6.0 ± 0.3</td>
</tr>
<tr>
<td>BG 5-110509</td>
<td>Of</td>
<td>1421</td>
<td>85 ± 3 9.5 ± 4.5</td>
<td>9.5 ± 4.5</td>
</tr>
<tr>
<td>BG 6-110509</td>
<td>Of +</td>
<td>1505</td>
<td>84 ± 26 9.3 ± 0.5</td>
<td>9.3 ± 0.5</td>
</tr>
<tr>
<td>BG 1-110509</td>
<td>Ah</td>
<td>797</td>
<td>56.2 ± 9.4 6.2 ± 0.3</td>
<td>6.2 ± 0.3</td>
</tr>
<tr>
<td>BG 2-110509</td>
<td>Ah</td>
<td>974</td>
<td>11.8 ± 3.1 7.4 ± 2.3</td>
<td>7.4 ± 2.3</td>
</tr>
<tr>
<td>BG 3-110509</td>
<td>Ah</td>
<td>1198</td>
<td>117 ± 25 9.2 ± 1.3</td>
<td>9.2 ± 1.3</td>
</tr>
<tr>
<td>BG 4-110509</td>
<td>Ah</td>
<td>1334</td>
<td>24 ± 5 5.0 ± 1.6</td>
<td>5.0 ± 1.6</td>
</tr>
<tr>
<td>BG 5-110509</td>
<td>Ah</td>
<td>1421</td>
<td>107 ± 19 29.6 ± 0.4</td>
<td>29.6 ± 0.4</td>
</tr>
<tr>
<td>BG 6-110509</td>
<td>Ah</td>
<td>1505</td>
<td>46 ± 17 6.4 ± 0.6</td>
<td>6.4 ± 0.6</td>
</tr>
</tbody>
</table>

Abbildung 65: EROD-Werte (TE pg TCDD g\(^{-1}\) trockener Boden) nach 24 Stunden Inkubation von L, O und A Horizonten am Höhenprofil (n=3). Die Quantifizierungsgrenze für EROD ist 3 pg TE g\(^{-1}\) trockener Boden. TE: Toxizitätsäquivalente.
Die persistenten dioxin-ähnlichen Stoffe sind gegenüber den nicht-persistenten Stoffen (24 Stunden Inkubation) in geringen Konzentrationen vertreten. Die hier dargestellten Ergebnisse liegen in derselben Größenordnung wie die EROD-Werte aus MONARPOP (Levy et al., 2011), die sich auf 6 Höhenprofile und 25 Standorte beziehen (Levy et al., 2011).

Die Übereinstimmung zwischen den MONARPOP- und POPALP-Ergebnissen kann als befriedigend bezeichnet werden (Abbildung 67). Lediglich der POPALP-Boden des Beprobungspunkts BG 3 (1198 m ü NN) löst einen deutlich höheren Response als der entsprechende (ca. 50 m entfernte) MONARPOP-Boden BG 3 (1210 m ü NN) nach 24 Stunden Inkubation aus.

Abbildung 67: Vergleich zwischen POPALP- und MONARPOP-EROD-Werte (TE pg TCDD g⁻¹ trockener Boden) nach 24 und 72 Stunden Inkubation an vier BG 1, BG 2, BG 3 und BG 5 (n=3). 24 und 72 entsprechen 24 und 72 Stunden Inkubation.
6.5.3. PAH

Bei den PAH erfolgten die Analysen beim italienischen Projektpartner (MONARPOP) bzw. im IÖC/HMGU (POPALP), die vergleichbare analytische Voraussetzungen gewährleisteten. Am Höhenprofil Berchtesgaden ergab sich für die Beprobung in MONARPOP kein einheitlicher Vertikalgradient für die einzelnen PAH (Abbildung 68).

Abbildung 68: Vertikalverteilung der PAH im Humus am Höhenprofil Berchtesgaden in MONARPOP

Insgesamt liegen bei den POPALP-Untersuchungen die höchsten Konzentrationen bei Phenanthren und Fluoranthen vor. Bei den MONARPOP-Erhebungen - bezogen auf Humus - weisen zusätzlich Benzo(b)fluoranthen und Chrysen im Vergleich zu den anderen Einzel-PAH höhere Konzentrationen auf.

Hinsichtlich der Herkunft der PAH, welche in der Vergangenheit in die Böden am Höhenprofil Berchtesgaden eingetragen wurden, sind Verkehr und Hausbrand zu nennen. Dies lässt sich aus den Verhältnissen FLA/(FLA+PYR) und BaP/BghiP abschätzen (Abbildung 74); es wurden hier nur die Humusschicht aus MONARPOP und die Of- und IAh-Horizonte aus POPALP berücksichtigt. Unterschiede für die einzelnen Höhenlagen bzw. die ausgewählten Bodenschichten gab es nicht.
Das Verhältnis niedermolekularer PAH (NAP bis PYR) zu den Gesamt-PAH weist im O- und A-Horizont bei BG 4 ein Maximum (0,8-0,9) gegenüber den Standorten im Tal und im höheren Hangbereich (0,2-0,6) auf; dies könnte mit der Existenz einer „warmen Hangzone“, der stärkeren Einstrahlung bzw. mit der Tatsache, dass am Hang dort die Häufigkeit von Nebellagen am geringsten ist (Pichler et al., 1996), zusammenhängen; möglicherweise rührt es auch daher, dass infolge der geringeren Hangneigung die Ausfilterung von Nebel- und Wolkenwasser geringer ist.

Der Vergleich mit der Belastung von Standorten aus anderen Studien ergibt Folgendes: Innerhalb des Alpenraumes sind die höchsten Konzentrationen in den Randgebieten zu finden, wie das Projekt MONARPOP ergeben hat; dabei sind die PAH-Belastungen im Nationalpark Berchtesgaden etwas geringer als in anderen Teilen des Bayerischen Alpenraums (z.B. Werdenfelser Land). Allerdings hat sich gezeigt, dass - möglicherweise bedingt durch die veränderte Bodenprobenahme und spekulativ vermutet durch weiteren Eintrag - in POPALP höhere Konzentrationen ermittelt wurden als in MONARPOP. Im Vergleich zu früheren Erhebungen in der Schweiz (Bucheli et al., 2004) liegen die Konzentrationen in POPALP ebenfalls höher. In bayerischen Mittelgebirgen, wie dem Bayerischen Wald, wurden allerdings deutlich höhere Konzentrationen zwischen 2700 (Vorderer Bayerischer Wald) und 6300 ng/g TS (Haidel/Dreiländereck) ermittelt (Kirchner et al., 2007); noch höhere Gehalte waren in NO-Bayern (Fichtelgebirge) anzutreffen (Pichler et al., 1996). In Kosetice (Südböhmen) waren im Boden 41-5400 ng Gesamt-PAH/g Trockengewicht (Mittel: 600 ng/g; Median: 280 ng/g) anzutreffen, wobei ein leichter Rückgang im Zeitraum 1995-2006 festgestellt wurde (Holoubek, 2007).

Dass die gemessenen Werte im Berchtesgardener Land allerdings um ein bis über zwei Größenordnungen über denjenigen in wenig anthropogen beeinflussten Gebieten liegt, zeigt der Vergleich mit Erhebungen an der schwedischen Westküste (Brorström-Lunden, 1998) und in amerikanischen Nationalparks sowie auf Island, wo man PAH-Konzentrationen (Summe PAH) im Boden von <10 ng/gTS fand (Ecomed, 2004). In Waldböden im Umkreis von Toronto wurden für BaA Konzentrationsbereiche von 1-200 ng/g TS (POPALP: 10-30 ng/g TS), für BbF von 1-220 ng/g TS (POPALP: 50-400 ng/g TS) und für PYR von 5-370 ng/g TS (POPALP: 20-160 ng/g TS) ermittelt (Wong et al., 2004). Die Konzentrationen der in POPALP untersuchten Böden zeigen in der Regel höhere Werte als die 40-100 km von Toronto entfernten Standorte mit Ausnahme der Gebiete, in denen von Waldbränden bzw. von Holzverbrennung berichtet wurde.
Aus den Ergebnissen der vorliegenden Erhebungen aus MONARPOP und POPALP muss gefolgert werden, dass die Belastung im Boden möglicherweise weiter zunimmt, da die Persistenz vieler PAH hoch ist.

6.5.4. OCP

Beim Endosulfan-I, für das aus MONARPOP keine Ergebnisse vorliegen, fällt im Gegensatz zu den meisten Substanzen auf, dass in der Streu (bezogen auf Frischgewicht) die Konzentrationen höher sind als im Auflagehumus. Mit Alterung, d.h. Umwandlung der Streu zu Humusaufllage und schließlich Einarbeitung in den Mineralboden nimmt das Verhältnis Endosulfan-I/Endosulfan-II (0,6-2,0 zu 0,4-1,1 je nach Standort) ab, da sich Endosulfan-I schneller als Endosulfan-II abbaut.

Abbildung 75: γ-HCH in den Böden am Höhenprofil Berchtesgaden

Abbildung 76: p,p’-DDT im Boden
Abbildung 76: p,p’-DDT in den Böden am Höhenprofil Berchtesgaden

Abbildung 77: Hexachlorbenzol in den Böden am Höhenprofil Berchtesgaden

Abbildung 78: Endosulfan-I in den Böden am Höhenprofil Berchtesgaden

Im Vergleich zu anderen Gebieten kann die Belastung am Höhenprofil Berchtesgaden wie folgt charakterisiert werden: HCB-Konzentrationen variieren entsprechend den Erhebungen in MONARPOP (2008) im Alpenraum in mittlerer Hanghöhe zwischen 900 und 3200 ng/g TS; die Ergebnisse für den Humus am Höhenprofil Berchtesgaden (BG 5: 2900 ng/g TS) lagen dabei vergleichsweise hoch. Die DDX-Konzentrationen von ca. 12000 ng/g TS an BG 5 lagen dagegen im Bereich der mittleren Belastung in den Alpen (3000-30000 ng/g TS). Ähnlich ist die Situation für die HCH-Konzentrationen (BG 5: ca. 7000 ng/g TS gegenüber einer allgemeinen Belastung in den Alpen von 1000-11000 ng/g TS).
Untersuchungen in Waldgebieten ca. 10 km nordöstlich des Industriezentrums von Bitterfeld (Sachsen-Anhalt) ergaben etwa 10 Jahre nach Beendigung der massiven Einträge von POPs γ-HCH-Konzentrationen in der Streu von 5200-12200 pg/g TS, im Humus 9700-12300 pg/g TS und im oberen Mineralboden 2400-6200 pg/g TS. Im Vergleich dazu belaufen sich die am Höhenprofil gemessenen Konzentrationen mit 500-2500 pg/g TS im Humus auf maximal ein Fünftel.

Bei p,p’-DDT lagen die bei Bitterfeld gemessenen Konzentrationen in der Streu bei 700-1700 pg/g TS, im Humus bei 1600-3800 pg/g TS und im oberen Mineralboden bei 2400-6200 pg/g TS. Somit unterschreiten die Konzentrationen am Höhenprofil Berchtesgaden die aus dem Waldboden bei Bitterfeld stammenden Werte meist deutlich, aber weniger stark im Vergleich zu den HCH (L: <1000 pg/g TS, Of: 1000-5000 pg/g TS, A: <2000 pg/g TS). Die Unterschreitung ist am größten im Mineralboden, während an BG 6 im Humus sogar höhere Werte gemessen wurden. Streng genommen sind beide Standorte schwerlich miteinander zu vergleichen, da Entfernung zu (ehemaligen) Quellen, Orographie, Bestand, Boden und Klima (Temperatur, Niederschlag) an beiden Orten stark voneinander abweichen.

Von großem Interesse ist der Vergleich mit den Ergebnissen aus dem Bayerischen Wald/Böhmerwald (Kirchner et al., 2007). Im Humus lagen die Konzentrationen an den vier Standorten im Bereich von 2200-7000 pg/g TS, also zwischen den Werten vom Höhenprofil Berchtesgaden und den Beständen bei Bitterfeld. Hinsichtlich p,p’-DDT wurden in dem ostbayerischen Mittelgebirge und im angrenzenden Böhmerwald im Humus allerdings 17000-36000 pg/g TS gemessen, was das 10fache der Konzentrationen des Bitterfelder Standorts beträgt. Beim Hexachlorbenzol ergaben sich im Berchtesgadener Raum ähnliche Konzentrationen wie in Ostbayern und Südböhmen.

6.5.5. PBDE

Das Kongener BDE 209 stellte erwartungsgemäß den prozentual höchsten Anteil an der Gesamtsumme der PBDE dar. Während der Anteil im Depositspfad mehr als 90% ausmachte, werden im Humus (nur MONARPOP) Werte von 60-80% gemessen. Die Werte in der jüngsten (obersten) Schicht, der Streuauflage, lagen bis auf BG 4 meist unter der Bestimmungsgrenze. Setzt man deren Hälfte als Werte an, so ergibt sich für BDE 209 in der Streuauflage ein Anteil von 35–50 %. Im O-Horizont liegt dieser bei 50-60% und im A-Horizont bei 40-70%.

Die vertikale Verteilung der PBDE für die MONARPOP-Untersuchung ist in Abbildung 81 dargestellt. Für diese Messung ist keine Tendenz zu erkennen. Eine Erklärung für den mehr als 10-fach höheren Wert am Messpunkt BG 3 kann nicht ohne Weiteres gegeben werden; ob die Tatsache, dass ein in den 1940er Jahren in der Nähe an der Straße vorhandenes Treibstoffdepot (mögliche Lösung eines Brandes) dafür verantwortlich gemacht werden kann, ist unklar. Jedenfalls wurden in Kenntnis dieses Unfalls vor Beginn von POPALP die Bodenuntersuchungsflächen von BG 3 um ca. 50 m weiter in den Bestand verlegt.

Für die Summe der 7 PBDE in der Streuauflage ist kein eindeutiger Trend erkennbar. Die Werte für das BDE 209 (Abbildung 82, unteres Bild) lagen nur am Messpunkt BG 4 oberhalb der Bestimmungsgrenze, für die anderen Messpunkte ist jeweils der Wert für die halbe Bestimmungsgrenze dargestellt.

Abbildung 82: Höhenprofil des Gehaltes der \sum 7 BDE (oberes Bild) und BDE 209 (unteres Bild) in den unterschiedlichen Bodenhorizonten (POPALP-Messung)

6.6. Vertikalprofil der Nadelproben im NP BG

6.6.1. **PCDD/F**

Abbildung 83: 1234678-HpCDD-Konzentration in frischen Fichtennadeln (1. Njg.)

Abbildung 84: OCDD-Konzentration in frischen Fichtennadeln (1. Njg.)
Bei vielen Dioxinen und Furanen, insbesondere bei den 1234678-HpCDD/F, sind die Konzentrationen im Tal und im oberen Hangbereich am höchsten. Vielfach sind am Standort BG 5 die geringsten Werte wegen der möglicherweise größten Quellenferne zu erkennen.

Abbildung 85: 1234678-HpCDF-Konzentration in frischen Fichtennadeln (1. Njg.)

Abbildung 86: TEQ (WHO)-Werte in Fichtennadeln (1. Njg.)

Im Alpenraum wurden in MONARPOP große Unterschiede bei den PCDD/F-Gehalten in den Nadeln (0,5-jährig) beobachtet. Während an BG 5 sehr geringe Konzentrationen (<2 pg/g TS) gemessen wurden, wurden am ober-, niederösterreichischen und lombardischen Alpenrand z.T. Werte von >9 pg/g TS ermittelt. Ähnlich gering wie im Berchtesgadener Raum waren die Konzentrationen vor allem in den Zentralalpen.

Hinsichtlich der Gehalte von Dioxinen und Furanen in Fichtennadeln unterschiedlichen Alters sollte davon auszugehen sein, dass die Konzentrationen mit Zunahme der Expositionszeit ansteigen
(Abbildung 87 bis Abbildung 89). Dabei ist tatsächlich der Konzentrationsanstieg von OCDD und OCDF bei ein-, zwei- bzw. dreijährigen Nadeln, d.h. wenn das Winterhalbjahr als Expositionszeitraum direkt vor der Beerntung liegt, in allen Höhen zu erkennen. Bei den 0.5, 1.5 bzw. 2.5 Jahre alten Nadeln, bei denen nach dem Sommerhalbjahr geerntet wird, muss von einem Abbau der PCDD/F in und auf den Nadeln in der wärmeren und strahlungsreicherer Halbjahresperiode bei gleichzeitig geringerer Immission ausgegangen werden. Somit ist hier der Anstieg nicht durchgängig zu erkennen.

Abbildung 87: OCDD-Konzentrationen in Fichtennadeln unterschiedlichen Alters

Abbildung 88: OCDF-Konzentrationen in Fichtennadeln unterschiedlichen Alters

Abbildung 89: TEQ (WHO)-Werte der PCDD/F für Fichtennadeln unterschiedlichen Alters

6.6.2. PCB

Bei den PCB ist in den Fichtennadeln vom Oktober 2008 eine leichte Zunahme der Konzentrationen mit steigender Höhe zu erkennen: Bei den Proben des 1. Nadeljahrgangs stieg die Summe der 6 Indikator-PCB von 0.22 auf 0.39 ng/g TS an und bei den Proben des 3. Nadeljahrgangs von 0.30 auf 0.48 ng/g TS. Vom 1. zum 3. Nadeljahrgang ist an den einzelnen Standorten jeweils eine leichte Zunahme der PCB-Gehalte festzustellen. Für die Summe der PCB verdoppelt sich die Konzentration in Fichtennadeln mit Zunahme der Höhe und nimmt auch leicht mit dem Nadelalter zu (Abbildung 90).
Abbildung 90: PCB-Gehalt (Summe der 6 Indikator Kongenere) in den Fichtennadeln am Vertikalprofil im NP BG, Probenahme Oktober 2008

Bei den Fichtennadeln vom Mai 2009 ist bei sehr ähnlichem Konzentrationsniveau wie in den Proben vom Oktober 2008 bei allen drei Nadeljahrgängen ebenfalls ein Anstieg mit der Höhe zu erkennen. In den Proben des 1. Nadeljahrgangs stieg die Summe der 6 Indikator-PCB von 0.23 auf 0.41 ng/g TS und bei den Proben vom 3. Nadeljahrgang von 0.28 auf 0.43 ng/g TS an. Ebenso ist vom 1. zum 3. Nadeljahrgang an den einzelnen Standorten jeweils eine leichte Zunahme der PCB-Gehalte festzustellen. Die TEQ-Werte der dl-PCB liegen im Mittel bei 0.114 ng/kg TS (Bereich: 0.089 – 0.164 ng/kg TS) und damit etwas höher als in den Fichtennadeln vom Oktober 2008 mit einem Mittelwert von 0.093 ng/kg TS (Bereich: 0.043 – 0.137 ng/kg TS). Entsprechend ist auch der Beitrag der dl-PCB zum Gesamt-WHO-TEQ in den Proben vom Mai 2009 mit einem mittleren Anteil von 60 % (Bereich: 52 – 76 %) höher.

6.6.3. PBDE

Abbildung 91: Gehalt des Kongeners BDE 47 in den Fichtennadeln am Vertikalprofil im NP BG, Probenahme Oktober 2008

Hinsichtlich der in MONARPOP erfolgten Darstellung der regionalen Verteilung von PBDE in Fichtennadeln liegen nur von wenigen Standorten für die Summe aus den 6 wichtigsten Kongeneren Konzentrationen über der Nachweisgrenze vor, diese befinden sich vornehmlich in den Westalpen (Schweiz, Italien).

6.6.4. PAH

Im Bayerischen Wald/Böhmmerwald lagen die Konzentrationen hinsichtlich der Summe der PAH bei 10000-35000 pg/g Frischgewicht, also deutlich höher als die in MONARPOP und POPALP gemessenen Werte (Kirchner et al., 2007); in Kosetice, einer südböhmischen Reinluftmessstation ergaben sich mit 33000-79000 pg/g Trockengewicht (2006) noch wesentlich höhere Gehalte in Fichtennadeln, wobei während der Zeit von 1995-2006 ein Rückgang zu verzeichnen war (Holoubek et al., 2007). In Österreich ergaben sich nach Weiß (1998) bei früheren Erhebungen ähnlich wie in Bayern geringere Werte im Alpenraum im Vergleich zum Böhmerwald.
Abbildung 93: PAH-Konzentrationen in Fichtennadeln (1. Njg.)

Bei den Einzelsubstanzen ist im Grunde ein ähnlicher Sachverhalt anzutreffen. Bei Phenanthren liegen die geringsten Werte in den mittleren Höhenlagen (Abbildung 94). Im Gegensatz zu dieser Substanz kann kaum eine zeitliche Abnahme bei Fluoranthen festgestellt werden (Abbildung 95).

Abbildung 94: Phenanthren-Konzentration in Fichtennadeln (1. Njg.)
Abbildung 95: Fluoranthen-Konzentrationen in Fichtennadeln (1.Njg.)

Bei Benzo(a)pyren ist der Trend zu niedrigeren Werten nicht eindeutig. Meist weisen sowohl der unterste als auch der oberste Punkt im Höhenprofil maximale Konzentrationen auf (Abbildung 96).

Abbildung 96: Benzo(a)pyren-Konzentrationen in Fichtennadeln (1.Njg.)

In MONARPOP wurde festgestellt, dass die schwereren und toxischeren PAH (BaA, BbF, BkF, BghiP, BaP) höhere Konzentrationen in den östlichen Teilen der Alpen aufweisen, während die
leichteren und flüchtigeren PAH (NAP, PHE, FLU, FLA, PYR) mehr in den Westalpen zu finden sind. BaP lag im Bereich von 0 bis 15000 pg/g TS (BG 5 Oktober 2004: ca. 700 pg/g TS).

Abbildung 97: PAH-Konzentrationen in Fichtennadeln unterschiedlicher Nadeljahrgänge

Verschiedene Verhältnisse, wie BaP/BghiP oder FLA/(FLA/PYR) wurden berechnet, um die Quellen für PAH, z.B. Verkehr oder Hausbrand, voneinander zu trennen (Zhang und Wang, 2011).

Abbildung 99: Verhältnis (BaP/BghiP)/(FLA/(FLA+PYR)) in Fichtennadeln

6.6.5. OCP

Bei den Pestiziden ist ein leichter bis deutlicher Rückgang bei den Konzentrationen in den Fichtennadeln zu erkennen (Abbildung 100 bis Abbildung 107). Der größte Rückgang liegt bei
Endosulfan-I vor. Da die MONARPOP-Ergebnisse wesentlich inhomogener als die POPALP-Ergebnisse erscheinen, bleiben die Aussagen zum Trend eher spekulativ.

Da trotz vielfacher Inversionen ein Luftaustausch entlang des Profils gewährleistet ist, ist eine komplette Enkoppelung der oberen Hanglagen vom Tal wohl nicht gegeben, wie es für die Zugspitze häufiger vorliegt. Somit ist nicht damit zu rechnen, dass die oberen Messpunkte grundsätzlich anderen Einflüssen ausgesetzt sind als die Tallagen. Hinsichtlich der Vertikalverteilung ist trotzdem eine Art 'U'-Verteilung mit leicht erhöhten Werten im Tal und im höheren Hangbereich festzustellen. Allerdings liegt ein solcher Verlauf nicht zu allen Erntezeitpunkten und nicht bei allen Substanzen, insbesondere bei DDD, vor.

Abbildung 100: p,p’-DDT-Konzentrationen in Fichtennadeln (1.Njg.)
Abbildung 101: p,p’-DDE-Konzentrationen in Fichtennadeln (1.Njg.)

Abbildung 102: DDX-Konzentrationen in Fichtennadeln (1.Njg.)
Die \(\gamma \)-HCH-Konzentrationen tendieren während der 5-jährigen Messphase ebenfalls zu geringeren Werten, wobei eine einheitliche Vertikalverteilung nicht zu erkennen ist. Interessant ist der Vergleich mit Messungen an Höhenprofilen in Tibet, wo Kiefernnadeln untersucht wurden (Yang et al., 2008). Bei um den Faktor 5-10 höheren Konzentrationen liegt bei zwei von drei Profilen eine Abnahme der Gehalte mit der Höhe vor. Die Vertikalverteilungen können hier durch die Nähe zu Quellen, die Topographie, das lokale und regionale Windsystem und die unterschiedliche Verteilung des Niederschlags mit der Höhe erklärt werden.

Abbildung 104: HCH-Konzentrationen in Fichtennadeln (1.Njg.)

In MONARPOP gab es große Unterschiede bei den Konzentrationen von HCH (Summe) (71-264 pg/g TS), der Standort BG 5 (189 pg/g TS) lag im mittleren Bereich; die höchsten Werte wurden östlich von Tirol gemessen.

Abbildung 105: Dieldrin-Konzentrationen in Fichtennadeln (1.Njg.)

Dieldrin konnte in den Nadeln im Rahmen von MONARPOP alpenweit mit einer Konzentration von der Nachweigrenze bis 64 pg/g TS gefunden werden; BG 5 wies eine Konzentration von 15,6 pg/g TS auf.
In der Regel nehmen die OCP-Konzentrationen von wenigen Ausnahmen abgesehen mit dem Nadelalter zu. Dabei enthalten wiederum die nach den Sommerhalbjahren geernteten Proben die höchsten Werte (Abbildung 108 bis Abbildung 111).

Abbildung 106: Pentachloranisol-Konzentrationen in Fichtennadeln (1.Njg.)

Abbildung 107: Endosulfan-I-Konzentrationen in Fichtennadeln (1.Njg.)

Im Bayerischen Wald/Böhmerwald lagen die HCH-Konzentrationen im Bereich 50-500 pg/g Frischgewicht (Kirchner et al., 2007), wobei ebenfalls ein deutscher Anstieg mit dem Alter der Nadeln registriert wurde. Die Konzentrationen für das Berchtesgadener Profil liegen auf einem geringeren Niveau (20-180 pg/g Frischgewicht). Die HCH-Konzentrationen in Kosetice (Holoubek, 2007) lagen im Zeitraum 1996-2006 zwischen Werten unter der Nachweisgrenze von 10 pg/g
Trockengewicht und 37000 pg/g (Median: 2600 pg/g); im Jahr 2006 ergaben die Untersuchungen einen Bereich von 1000-10000 pg/g Trockengewicht, also noch um eine Größenordnung höher als am Höhenprofil Berchtesgaden.

Abbildung 108: DDX-Konzentrationen in Fichtennadeln unterschiedlichen Alters

Abbildung 109: HCH-Konzentrationen in Fichtennadeln unterschiedlichen Alters
Abbildung 110: Hexachlorbenzol-Konzentrationen in Fichtennadeln unterschiedlichen Alters

Entsprechende Werte von HCB lagen in Kosetice (Holoubek, 2007) im Zeitraum 1996-2006 zwischen Werten unter der Nachweigrenze von 10 pg/g Trockengewicht und 51000 pg/g (Median: 4800 pg/g), damit im Schnitt auch deutlich über den in Berchtesgaden gemessenen Werten. Im Jahr 2006 lag der Bereich noch bei 300-700 pg/g Trockengewicht, also noch ca. das 3-5fache der Werte von Berchtesgaden.

Abbildung 111: Dieldrin-Konzentrationen in Fichtennadeln unterschiedlichen Alters

Abbildung 112: Verhältnis α-HCH/γ-HCH in Fichtennadeln

Abbildung 113: p,p'-DDE/p,p'-DDT in Fichtennadeln

Darüber hinaus ist das Verhältnis o,p'-DDT/p,p'-DDT in Fichtennadeln zwischen MONARPOP und POPALP angestiegen; tendenziell liegt auch eine vertikale Zunahme vor. Eine ähnliche Zunahme mit der Höhe wird aus dem Himalaya berichtet (Wang et al., 2006). Hier wird der relative Anstieg von o,p'-DDT mit dem Einsatz eines neuen Pestizids (Dicofol) begründet.
6.7. Vergleich der Konzentrationen in Nadeln und SPMD am Vertikalprofil im NP BG

Beim Phenanthren weisen die Höhenprofile eine gute Übereinstimmung auf. Die Konzentrationen nehmen vom Tal nach oben ab, wobei ab BG 3 keine weitere Abnahme mehr zu verzeichnen ist. Beide Matrices zeigen mit Zunahme der Expositionszeit von 5 (Sommer) auf 12 Monate (Jahr) auch eine Zunahme in den Konzentrationen.
Abbildung 115: Phenanthren-Konzentrationen in Nadeln und SPMD am Höhenprofil

Abbildung 116: γ-HCH-Konzentrationen in Nadeln und SPMD am Höhenprofil

Abbildung 117: Endosulfan-I-Konzentrationen in Nadeln und SPMD am Höhenprofil
7. Literatur

Bayerisches Landesamt für Umwelt (LfU), 2006: Ermittlung der Immissionsbelastung durch polychlorierte Dioxine (PCDD) und Furane (PCDF) sowie dioxinähnliche PCB in Bayern

Brorström-Lunden E and Löfgren C, 1998. Atmospheric Fluxes of Persistent Semivolatile Organic Pollutants to a Forest Ecological System at the Swedish West Coast and Accumulation in Spruce Needles. Environmental Pollution 102, 139-149.

Hayakawa, K., Takatsuki , H., Watanabe, I., Sakai, S., 2004. Polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) and monobromo-polychlorinated dibenzo-p-dioxins/dibenzofurans (MoBPXDD/Fs) in the atmosphere and bulk deposition in Kyoto, Japan. Chemosphere 57, 343–356.

UBA (2008): Bromierte Flammschutzmittel – Schutzengel mit schlechten Eigenschaften?

8. Anhang

8.1. Geologische Karte

Abbildung 118: Geologische Karte mit Bodenprobenahmepunkten
8.2. Standortbeschreibungen

Abbildung 119: Standort BG 1

Abbildung 120: Bodenprofil BG 1 (Braunerde-Rendzina)
Abbildung 121: Standort BG 2

Abbildung 122: Bodenprofil BG 2 (Braunerde)
Abbildung 123: Standort BG 3

Abbildung 124: Bodenprofil BG 3 (Braunerde-Rendzina)
Abbildung 125: Standort BG 4

Abbildung 126: Bodenprofil BG 4 (Braunerde)
Abbildung 127: Standort BG 5

Abbildung 128: Bodenprofil BG 5 (Braunerde)
Abbildung 129: Standort BG 6

Abbildung 130: Bodenprofil BG 6 (Rendzina)
Tabelle 34: Bodenprofil am Standort BG 1

<table>
<thead>
<tr>
<th>Kol.</th>
<th>Prof.-Nr.</th>
<th>Lage</th>
<th>Zuordnung</th>
<th>Aufnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LG019</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intensität
- **Klima**
- **Nutzung**
- **Relief**

Bodensystem, Bodenform, Substratsystem, Legenden-, Hamus- und GW-Standflächen

<table>
<thead>
<tr>
<th>Bodenform</th>
<th>Substratsystem</th>
<th>Legenden- zuordnung</th>
<th>Hamus-</th>
<th>GW-Standflächen</th>
<th>Bemerkungen</th>
</tr>
</thead>
</table>

Bodenkennzahlen

<table>
<thead>
<tr>
<th>Hori. Kennzahlen</th>
<th>Bodenfarbe</th>
<th>Skelett</th>
<th>Bodenart</th>
<th>Hydrom. Merkmale</th>
<th>Gefüge</th>
</tr>
</thead>
</table>

Tabelle mit Bodenprofil Daten

<table>
<thead>
<tr>
<th>Prof.-Nr.</th>
<th>Lage</th>
<th>Zuordnung</th>
<th>Aufnahme</th>
</tr>
</thead>
</table>

Fußnoten
- **A**
- **B**
- **C**

135

Tabelle 35: Bodenprofil am Standort BG 2

<table>
<thead>
<tr>
<th>Horizontalkennzeichnung</th>
<th>Bodentyp</th>
<th>Stabilität</th>
<th>Bodensort</th>
<th>Hydron. Merkmale</th>
<th>Gefüge</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>L</td>
<td>7</td>
<td>7</td>
<td></td>
<td>1, P</td>
</tr>
<tr>
<td>E2</td>
<td>Q</td>
<td>7</td>
<td>7</td>
<td></td>
<td>1, P</td>
</tr>
<tr>
<td>E3</td>
<td>B 10</td>
<td>7</td>
<td>7</td>
<td></td>
<td>1, P</td>
</tr>
<tr>
<td>E4</td>
<td>B 10</td>
<td>7</td>
<td>7</td>
<td></td>
<td>1, P</td>
</tr>
<tr>
<td>E5</td>
<td>B 10</td>
<td>7</td>
<td>7</td>
<td></td>
<td>1, P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profilkennung</th>
<th>Projektkennung</th>
<th>Lage</th>
<th>Zuordnung</th>
<th>Aufnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID: 113</td>
<td>LAGU19</td>
<td>HSS</td>
<td>Pegel</td>
<td>GL 2005</td>
</tr>
<tr>
<td>Bodenname: 14:25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kategorie: 14:25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boden: 8443</td>
<td></td>
<td>70</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intensität</th>
<th>Klima</th>
<th>Nutzung</th>
<th>Relief</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausfall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td>Probleme</td>
<td>Wetter-</td>
<td>Faktoren</td>
</tr>
<tr>
<td>Intensität</td>
<td>1500</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Relizität</td>
<td>PN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodenform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodenart</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skelett</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humusform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Göttler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodenschätzung</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bodensystem</th>
<th>E.</th>
<th>Bodenform</th>
<th>Substratsystem</th>
<th>E.</th>
<th>Legenden</th>
<th>Bodenart</th>
<th>Humusform</th>
<th>Nähstoffaufnahme</th>
<th>GW-Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Böden aus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gefälle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizontenbezeichnung</th>
<th>Bodenfarbe</th>
<th>Skelett</th>
<th>Bodenart</th>
<th>Nährstoffe</th>
<th>Merkmale</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Bv Ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I BvDv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I BvDv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Tabelle 36: Bodenprofil am Standort BG 3 |
Tabelle 37: Bodenprofil am Standort BG 4

<table>
<thead>
<tr>
<th>Profilnummer</th>
<th>Projektkenntnung</th>
<th>Lage</th>
<th>Zuordnung</th>
<th>Aufnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projektnummer</td>
<td>Land</td>
<td>Bezeichnung</td>
<td>Datum</td>
</tr>
<tr>
<td></td>
<td>TGS/19</td>
<td>BG</td>
<td>Standort BG 4</td>
<td>27.02.2008</td>
</tr>
</tbody>
</table>

Bodenformen

<table>
<thead>
<tr>
<th>Bodenform</th>
<th>Subbodenart</th>
<th>Legende</th>
<th>Hartnäckigkeitsgrad</th>
<th>Bodenfaktor</th>
<th>GW-Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gelagert</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bodenprofil

<table>
<thead>
<tr>
<th>Schicht</th>
<th>betr.:</th>
<th>Belag:</th>
<th>Schichtb.</th>
<th>Bodeneigenschaften</th>
<th>Bodenkennzahlen</th>
<th>Komponenten der Grobfraktion</th>
<th>Komponenten der Feinfraktion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anmerkungen

- **A**: Horizont Nr. 3: bessere Horizontbezeichnung wie Ah+Gd, zahlreiche Raugeweiser, ginnemitellig
- **B**: Horizont Nr. 4: bessere Horizontbezeichnung wie B+Gd, zahlreiche Rauenämmer, humusgebäute Wurzelgänge, ginnemitellig
- **C**: Horizont Nr. 5: humusgebäute Wurzelgänge

Helmholtz-Zentrum München
Deutsches Forschungszentrum für Gesundheit und Umwelt*
Tabelle 38: Bodenprofil am Standort BG 5

<table>
<thead>
<tr>
<th>Profillenkreis</th>
<th>Projektkenntniss</th>
<th>Lage</th>
<th>Zuordnung</th>
<th>Aufnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hgl</td>
<td>TK25</td>
<td>10</td>
<td>0</td>
<td>WAPI/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Profillenkreis
- Hgl
- TK25
- 10
- 0
- WAPI/19

Bodenprofil am Standort BG 5

Reihe	Probier-	Symbol	Bodenfarbe	Stellung	Bodensubstrat	Bodenart	Hydrom. Merkmale	Gefüge
-------	Nr.							
1	L	L	0-5	w	da	7		
2	GP	GP	0-5	w	da	7		
3	LbH	LbH	0-10	w	da	7		
4	Bu	Bu	0-10	w	da	7		
5	Bu vu1	Bu	0-10	w	da	7		
6	Bu vu2	Bu	0-10	w	da	7		

Legenden- zuordnung
- Tabelle 38: Bodenprofil am Standort BG 5

Bemerkungen
- A: POP-Profilname für Helmholtz-Gesellschaft, GbR
- B: Hgl, TK25, 10-0: Schweizerische Angaben zur Lage
- C: Bodenprofil am Standort BG 5

139
Tabelle 39: Bodenprofil am Standort BG 6
<table>
<thead>
<tr>
<th>Proben-Nr</th>
<th>Probenbezeichnung</th>
<th>Probenmaterial</th>
<th>Entnahme-</th>
<th>Boden-Probe</th>
<th>Probenrahmen</th>
<th>Bodenphysikalische-Probe</th>
<th>Gewicht A</th>
<th>Gewicht B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>grh hand</td>
<td>104</td>
<td>104</td>
<td>105</td>
<td>105</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>Dh+Gh</td>
<td>grhm hand</td>
<td>106</td>
<td>106</td>
<td>107</td>
<td>107</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>ska</td>
<td>grhm hand</td>
<td>109</td>
<td>109</td>
<td>112</td>
<td>112</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>4</td>
<td>Bh+Cu1</td>
<td>grhm hand</td>
<td>111</td>
<td>111</td>
<td>112</td>
<td>112</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>5</td>
<td>silCu</td>
<td>grhm hand</td>
<td>113</td>
<td>113</td>
<td>112</td>
<td>112</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>6</td>
<td>silCu</td>
<td>grhm hand</td>
<td>115</td>
<td>115</td>
<td>112</td>
<td>112</td>
<td>115</td>
<td>115</td>
</tr>
</tbody>
</table>

Bemerkungen:

<table>
<thead>
<tr>
<th>Proben-Nr</th>
<th>Probenbezeichnung</th>
<th>Probenmaterial</th>
<th>Entnahme-</th>
<th>Boden-Probe</th>
<th>Probenrahmen</th>
<th>Bodenphysikalische-Probe</th>
<th>Gewicht A</th>
<th>Gewicht B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>grh hand</td>
<td>104</td>
<td>104</td>
<td>105</td>
<td>105</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>Dh+Gh</td>
<td>grhm hand</td>
<td>106</td>
<td>106</td>
<td>107</td>
<td>107</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>ska</td>
<td>grhm hand</td>
<td>109</td>
<td>109</td>
<td>112</td>
<td>112</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>4</td>
<td>Bh+Cu1</td>
<td>grhm hand</td>
<td>111</td>
<td>111</td>
<td>112</td>
<td>112</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>5</td>
<td>silCu</td>
<td>grhm hand</td>
<td>113</td>
<td>113</td>
<td>112</td>
<td>112</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>6</td>
<td>silCu</td>
<td>grhm hand</td>
<td>115</td>
<td>115</td>
<td>112</td>
<td>112</td>
<td>115</td>
<td>115</td>
</tr>
</tbody>
</table>

Bemerkungen:

<table>
<thead>
<tr>
<th>Proben-Nr</th>
<th>Probenbezeichnung</th>
<th>Probenmaterial</th>
<th>Entnahme-</th>
<th>Boden-Probe</th>
<th>Probenrahmen</th>
<th>Bodenphysikalische-Probe</th>
<th>Gewicht A</th>
<th>Gewicht B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>grh hand</td>
<td>104</td>
<td>104</td>
<td>105</td>
<td>105</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>Dh+Gh</td>
<td>grhm hand</td>
<td>106</td>
<td>106</td>
<td>107</td>
<td>107</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>ska</td>
<td>grhm hand</td>
<td>109</td>
<td>109</td>
<td>112</td>
<td>112</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>4</td>
<td>Bh+Cu1</td>
<td>grhm hand</td>
<td>111</td>
<td>111</td>
<td>112</td>
<td>112</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>5</td>
<td>silCu</td>
<td>grhm hand</td>
<td>113</td>
<td>113</td>
<td>112</td>
<td>112</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>6</td>
<td>silCu</td>
<td>grhm hand</td>
<td>115</td>
<td>115</td>
<td>112</td>
<td>112</td>
<td>115</td>
<td>115</td>
</tr>
</tbody>
</table>

Bemerkungen:

Tabelle 41: Probenprotokolle von den Standorten BG 4, BG 5 und BG 6

<table>
<thead>
<tr>
<th>Proben-Nr</th>
<th>Probenbezeichnung</th>
<th>Probenmaterial</th>
<th>Bodenprobe</th>
<th>Bodenprobeprobe</th>
<th>Bodenprobeprobe</th>
<th>Gewicht A</th>
<th>Gewicht B</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>L</td>
<td>142</td>
<td>104</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>-1</td>
<td>-0,5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Ck</td>
<td>-0,5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>um</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Iv</td>
<td>16</td>
<td>35</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Iv+Cr-1</td>
<td>35</td>
<td>80</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Iv+Cr-2</td>
<td>80</td>
<td>100</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Bemerkungen
VF: nur Organproben I. Helmoltz; 2. Flaschen (1,0 + 3,5) V 2: Skelett aussortiert; 3: Skelett aussortiert; 4: Probenmaterial mit 15 mm Edelstahlbrett, keine LD wg. hohem Skelettausfall; 5: Probenmaterial mit 15 mm Edelstahlbrett, keine LD wg. hohen Skelettabgang

Tabelle 41: Probenprotokolle von den Standorten BG 4, BG 5 und BG 6

<table>
<thead>
<tr>
<th>Proben-Nr</th>
<th>Probenbezeichnung</th>
<th>Probenmaterial</th>
<th>Bodenprobe</th>
<th>Bodenprobeprobe</th>
<th>Bodenprobeprobe</th>
<th>Gewicht A</th>
<th>Gewicht B</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>L</td>
<td>142</td>
<td>104</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>-3,6</td>
<td>-0,5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Ck</td>
<td>-0,5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>um</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Iv</td>
<td>12</td>
<td>35</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Iv+Cr-1</td>
<td>35</td>
<td>80</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Iv+Cr-2</td>
<td>80</td>
<td>100</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Bemerkungen
VF: nur Organproben I. Helmoltz; 2. Flaschen (1,0 + 3,5) V 2: Skelett aussortiert; 3: Skelett aussortiert; 4: Probenmaterial mit 15 mm Edelstahlbrett, keine LD wg. hohem Skelettausfall; 5: Probenmaterial mit 15 mm Edelstahlbrett, keine LD wg. hohen Skelettabgang

Tabelle 41: Probenprotokolle von den Standorten BG 4, BG 5 und BG 6

<table>
<thead>
<tr>
<th>Proben-Nr</th>
<th>Probenbezeichnung</th>
<th>Probenmaterial</th>
<th>Bodenprobe</th>
<th>Bodenprobeprobe</th>
<th>Bodenprobeprobe</th>
<th>Gewicht A</th>
<th>Gewicht B</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>L</td>
<td>142</td>
<td>104</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>-4,3</td>
<td>-3,5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Ck</td>
<td>-3,5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>um</td>
<td>0</td>
<td>25</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Iv</td>
<td>25</td>
<td>62</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Iv+Cr</td>
<td>62</td>
<td>100</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Bemerkungen
VF: nur Organproben I. Helmoltz; 2. Flaschen (1,0 + 3,5) V 2: Skelett aussortiert; 3: Skelett aussortiert; 4: Probenmaterial mit 15 mm Edelstahlbrett, keine LD wg. hohem Skelettabgang; 5: Probenmaterial mit 15 mm Edelstahlbrett, keine LD wg. hohen Skelettabgang
9. Abbildungen und Tabellen im Text und Anhang

Abbildung 1: Untersuchungsgebiete ... 9
Abbildung 2: Molekularstruktur der Dioxine (links) und der Furane (rechts) ... 10
Abbildung 3: Molekularstruktur der polychlorierten Biphenyle (PCB) ... 11
Abbildung 4: Messstandort an der Umweltforschungsstation Schneefernerhaus (UFS). 1 Low Volume Sampler (inklusive Steuereinheit), 2 High Volume Sampler, 3 Depositionssammler, 4 Schutzhütte für Passivsammler (SPMD), im Rahmen von POPALP nur im NP Berchtesgaden ... 19
Abbildung 5: Schematischer Aufbau von LVS und HVS ... 20
Abbildung 6: Definition der Quellgebiete für die Trajektorienvorhersage ... 21
Abbildung 7: SPMD-Expositionshütte ... 22
Abbildung 8: Schematische Darstellung der Beprobungsfläche mit den Beprobungspunkten ... 24
Abbildung 10: Proben von BG 3: L, Ot+Oh, Ah, Bv-Ah, Bv-cCv, cICv (v. links nach rechts). Im Vordergrund LD-Proben in PE-Beuteln ... 24
Abbildung 11: Lage der Probenahmestandorte im Nationalpark Berchtesgaden. BG 0: Freiland (Meteorologie), BG 1 – BG 6: Fichtenbestände (Boden, Fichtenadeln, SPMDs, Meteorologie), BG 7: Freiland (SPMDs, Meteorologie) ... 25
Abbildung 12: Entnadelung in einer Glovebox ... 27
Abbildung 13: Mittlere Homologenprofile der PCDD/F-Immissionskonzentration an der UFS Schneefernerhaus über den gesamten Zeitraum (2005-2010), getrennt für die Sommer- und Wintermessperioden ... 38
Abbildung 14: Verhältnisse der mittleren Immissionskonzentrationen Sommer/Winter getrennt gemittelt (Median) für die Summen der tetra- bis oktachlorierten PCDD/F ... 39
Abbildung 17: Zeitlicher Verlauf der Summe der Indikator PCB, getrennt für die untersuchten Herkunftsgebiete für die Jahre 2005-2010 ... 42
Abbildung 18: Zeitlicher Verlauf der Summe der EPA-PAH (ohne NAP) getrennt für die untersuchten Herkunftsgebiete für die Jahre 2005-2010 ... 43
Abbildung 20: Verhältnisse der mittleren Immissionskonzentrationen Sommer/Winter getrennt gemittelt (Median) für die einzelnen PAH ... 44
Abbildung 21: Vergleich der Immissionskonzentration von γ-HCH während aller Messzeiträume getrennt für die drei Herkunftsgebiete ... 45
Abbildung 22: Konzentrationsverhältnisse Sommer/Winter für die Sektoren einzeln gemittelt (Median) ... 46
Abbildung 24: Zeitlicher Verlauf der Hexachlorbenzol-Konzentration (HCB) in der Luft, getrennt für die Herkunftsgebiete NW, NE und S ... 47
Abbildung 25: Zeitlicher Verlauf der mittleren täglichen Niederschlagsmengen in den Messzeiträumen von 2005-2010 ... 47
Abbildung 26: Vergleich der mittleren Depositionsraten (Mediane) für die gemessenen PCDD und PCDF jeweils getrennt gemittelt über die Sommer- und Wintermesszeiträume von 2005–2010 ... 49
Abbildung 27: Mittlere Homologenprofile der PCDD/F-Depositionsraten über den gesamten Zeitraum (2005-2010) getrennt für die Sommer- und Wintermessperioden ... 49
Abbildung 28: Zeitlicher Verlauf der Depositionsraten für die Summe der Dioxine und Furane für den gesamten Messzeitraum 2005-2010 ... 50
Abbildung 29: Zeitlicher Verlauf der Depositionsraten für die Summe der 2,3,7,8-substituierten Kongenere an allen drei Standorten für den gesamten Messzeitraum 2005-2010 ... 50
Abbildung 30: Zeitlicher Verlauf der Gesamtdepositionsraten der PCDD/F an allen drei Standorten für den gesamten Messzeitraum 2005-2010 ... 51
Abbildung 31: Vergleich der mittleren Depositionsraten (Mediane) für die gemessenen PCB - Kongenere getrennt gemittelt über die Sommer- und Wintermesszeiträume, 2005-2010 ... 52

Abbildung 33: Mediane der Depositionsraten (ng/m²Tag) für die 16 EPA-PAH, getrennt gemittelt über die Sommer- und Wintermesszeiträume zwischen 2005 und 2010.

Abbildung 34: Mediane der Depositionsraten (pg/m²Tag) für alle nachgewiesenen OCP, getrennt gemittelt über alle 7 Sommer- und alle 10 Wintermesszeiträume zwischen 2005 und 2010. Um für einen ersten vergleichenden Überblick die sehr unterschiedlichen Depositionsraten aller OCP darstellen zu können wurde die Ordinate logarithmischi skaliert.

Abbildung 35: Verhältnis der mittleren Depositionsraten (verwendet wurde der Median) zwischen der Deposition im Sommer und im Winter.

Abbildung 38: Zeitlicher Verlauf der Depositionsraten für Endosulfan-I und -II.

Abbildung 41: Mediane der Depositionsraten (pg/m²Tag) für alle nachgewiesenen PBDE, jeweils getrennt gemittelt über alle Sommer- und alle Wintermesszeiträume zwischen 2005 und 2010. Um einen Vergleich der Depositionsraten aller PBDE darstellen zu können wurde die Ordinate logarithmischi skaliert.

Abbildung 45: Monatmittelwerte der Lufttemperatur am Messtransekt Berchtesgaden für das Jahr 2009.

Abbildung 46: Monatmittelwerte der Lufttemperatur am Messtransekt Berchtesgaden für das Jahr 2010.

Abbildung 47: Jahresgang der Temperaturen am Höhenprofil.

Abbildung 48: Inversionshäufigkeiten zwischen den einzelnen Messpunkten.

Abbildung 49: Inversionshäufigkeiten zwischen Tal und höchstem Messpunkt.

Abbildung 51: Vertikalprofil der Lufttemperatur an den SPMD-Hütten gemittelt über die jeweiligen Expositionszeiträume.

Abbildung 52: Akkumulierte PCB (pg PCB #28 g⁻¹ Triolein) im SPMD in Berchtesgaden am Höhenprofil. Zwei ½ Jahr Expositionszeit und einjährige Expositionszeit.

Abbildung 53: Akkumulierte PCB (pg PCB #153 g⁻¹ Triolein) im SPMD in Berchtesgaden am Höhenprofil. 2,5 Jahre Expositionszeit und eine einjährige Expositionszeit.

Abbildung 54: Akkumuliertes Phenanthren (pg PHE g⁻¹ Triolein) im SPMD in Berchtesgaden am Höhenprofil. Zwei Halbjahre Expositionszeit und eine einjährige Expositionszeit.

Abbildung 55: Akkumuliertes Fluoranthen (pg FLA g⁻¹ Triolein) im SPMD in Berchtesgaden am Höhenprofil. Zwei Halbjahre Expositionszeit und einjährige Expositionszeit.

Abbildung 56: Akkumuliertes α-HCH (pg α-HCH g⁻¹ Triolein) in SPMD in Berchtesgaden entlang des Höhenprofils für zwei halbjährliche Expositionsperioden und eine jährliche Periode. Die gestrichelte Linie symbolisiert die Summe der beiden Halbjahrperioden.

Abbildung 57: Akkumuliertes HCB (pg α-HCB g⁻¹ Triolein) in SPMD in Berchtesgaden entlang des Höhenprofils für zwei halbjährliche Expositionsperioden und eine jährliche Periode. Die gestrichelte Linie symbolisiert die Summe der beiden ½ Jahres Perioden.

Abbildung 58: Akkumuliertes α-Endosulfan (pg α-Endosulfan g⁻¹ Triolein) in SPMD in Berchtesgaden entlang des Höhenprofils für zwei halbjährliche Expositionsperioden und eine einjährige Expositionszeit. Die gestrichelte Linie symbolisiert die Summe der beiden ½-jährigen Expositionen.

Abbildung 59: 1234678-HpCDD am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP.

Abbildung 60: OCDD am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP.

Abbildung 61: OCDF am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP.

Abbildung 62: WHO-TEQ der PCDD/F am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP.

Abbildung 63: Summe der 6 Indikator-PCB am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP.

Abbildung 64: WHO-TEQ der PCB am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP.

Abbildung 65: POP-TEQ der PCB am Höhenprofil im Humus und Mineralboden im Vergleich MONARPOP-POPALP.
Abbildung 65: EROD-Werte (TE pg TCDD g⁻¹ trockener Boden) nach 24 Stunden Inkubation von L, O und A Horizonten am Höhenprofil (n=3). Die Quantifizierungsgrenze für EROD ist 3 pg TE g⁻¹ trockener Boden. TE: Toxizitätsäquivalente ... 87
Abbildung 66: EROD-Werte (TE pg TCDD g⁻¹ trockener Boden) nach 72 Stunden Inkubation von L, O und A Horizonten am Höhenprofil (n=3) ... 88
Abbildung 67: Vergleich zwischen POPALP- und MONARPOP-EROD-Werte (TE pg TCDD g⁻¹ trockener Boden) nach 24 und 72 Stunden Inkubation an vier BG 1, BG 2, BG 3 und BG 5 (n=3). 24 und 72 entsprechen 24 und 72 Stunden Inkubation ... 88
Abbildung 68: Vertikalverteilung der PAH im Humus am Höhenprofil Berchtesgaden in MONARPOP 89
Abbildung 74: Quellenzuordnung hinsichtlich der in den Boden eingetragenen PAH .. 93
Abbildung 75: γ-HCH in den Böden am Höhenprofil Berchtesgaden ... 94
Abbildung 76: p,p'-DDT in den Böden am Höhenprofil Berchtesgaden ... 95
Abbildung 77: Hexachlorbenzol in den Böden am Höhenprofil Berchtesgaden .. 95
Abbildung 78: Endosulfan-I in den Böden am Höhenprofil Berchtesgaden .. 95
Abbildung 79: α-HCH/γ-HCH in den Böden am Höhenprofil Berchtesgaden .. 96
Abbildung 80: p,p'-DDE/p,p'-DDT in den Böden am Höhenprofil Berchtesgaden ... 96
Abbildung 81: Höhenprofil des Gehaltes von BDE 209 und der ∑ 7 BDE im Humus (MONARPOP-Messung) 98
Abbildung 82: Höhenprofil des Gehaltes der ∑ 7 BDE (oberes Bild) und BDE 209 (unteres Bild) in den unterschiedlichen Bodenhorizonten (POPALP-Messung) ... 99
Abbildung 83: 1234678-HpCDD-Konzentration in frischen Fichtennadeln (1. Njg.) .. 100
Abbildung 84: OCDD-Konzentration in frischen Fichtennadeln (1. Njg.) .. 100
Abbildung 85: 1234678-HpCDF-Konzentration in frischen Fichtennadeln (1. Njg.) .. 101
Abbildung 86: TEQ (WHO)-Werte in Fichtennadeln (1. Njg.) ... 101
Abbildung 87: OCDF-Konzentrationen in Fichtennadeln unterschiedlichen Alters .. 102
Abbildung 88: OCDF-Konzentrationen in Fichtennadeln unterschiedlichen Alters .. 102
Abbildung 89: TEQ (WHO)-Werte der PCDD/F für Fichtennadeln unterschiedlichen Alters 103
Abbildung 90: PCB-Gehalt (Summe der 6 Indikator Kongenere) in den Fichtennadeln am Vertikalprofil im NP BG, Probenahme Oktober 2008 104
Abbildung 91: Gehalt des Kongeners BDE 47 in den Fichtennadeln am Vertikalprofil im NP BG, Probenahme Oktober 2008 105
Abbildung 93: PAH-Konzentrationen in Fichtennadeln (1. Njg.) ... 107
Abbildung 94: Phenanthren-Konzentration in Fichtennadeln (1. Njg.) .. 107
Abbildung 95: Fluoranthren-Konzentrationen in Fichtennadeln (1. Njg.) .. 108
Abbildung 96: Benzo(a)pyren-Konzentrationen in Fichtennadeln (1. Njg.) .. 108
Abbildung 97: PAH-Konzentrationen in Fichtennadeln unterschiedlicher Nadeljahrgänge 109
Abbildung 98: BaP/BghiP in Fichtennadeln ... 110
Abbildung 99: Verhältnis (BaP/BghiP)/(FLA/(FLA+PYR)) in Fichtennadeln .. 110
Abbildung 100: p,p'-DDT-Konzentrationen in Fichtennadeln (1. Njg.) .. 111
Abbildung 101: p,p'-DDE-Konzentrationen in Fichtennadeln (1. Njg.) .. 112
Abbildung 102: DDX-Konzentrationen in Fichtennadeln (1. Njg.) ... 112
Abbildung 103: γ-HCH-Konzentrationen in Fichtennadeln (1. Njg.) ... 113
Abbildung 104: HCH-Konzentrationen in Fichtennadeln (1. Njg.) ... 114
Abbildung 105: Dieldrin-Konzentrationen in Fichtennadeln (1. Njg.) ... 114
Abbildung 106: Pentachloranisol-Konzentrationen in Fichtennadeln (1. Njg.) ... 115
Abbildung 107: Endosulfan-I-Konzentrationen in Fichtennadeln (1. Njg.) ... 115
Abbildung 108: DDX-Konzentrationen in Fichtennadeln unterschiedlichen Alters 116
Abbildung 109: HCH-Konzentrationen in Fichtennadeln unterschiedlichen Alters 116
Tabelle 1: Einteilung der untersuchten PCB, Anzahl der substituierten Chlor-Atome und Toxizitätsäquivalentfaktoren ... 12
Tabelle 2: Untersuchte EPA-PAH, verwendete Abkürzung, Molekularstruktur, Anzahl der anellierten Ringe (R) und Molekulargewicht (MG) ... 12
Tabelle 3: Untersuchten Organochlorpestizide (OCP). ... 15
Tabelle 3: Übersicht über Lage, Standort- und Bodenparameter im NP Berchtesgaden .. 26
Tabelle 4: Expositionzeit der einzelnen Nadeljahrgänge (NJG) für die drei Probenahmen (PRN) ... 27
Tabelle 5: Analysierte Dioxine und Furane .. 29
Tabelle 6: Vergleich der PCDD/PCDF-Ergebnisse in Depositionsproben (Werte in pg/m²*d) .. 30
Tabelle 7: Vergleich der PCB-Ergebnisse in Depositionsproben (pg/m²*d) .. 31
Tabelle 8: Analysierte PBDE-Kongeneren ... 31
Tabelle 9: PBDE-Ergebnisse in Depositionsrückstellproben und zugehörigen Blindwertproben (alle Werte in ng absolut) ... 33
Tabelle 10: Vergleich der PBDE-Ergebnisse in Depositionsproben (Werte in pg/m²*d) ... 33
Tabelle 11: Prozentualer Anteil der einzelnen Sektoren an der Gesamtsammelzeit im jeweiligen Messzeitraum 37
Tabelle 12: Mediane und Maxima der PCDD und PCDF Konzentrationen ... 41
Tabelle 13: Verhältnisse der Konzentration von FLA/(FLA+PYR), nach Herkunftssektoren und Jahreszeit (Sommer, Winter) getrennt gemittelt ... 44
Tabelle 14: Verhältnis der α-HCH/γ-HCH-Konzentration, nach Herkunftssektoren und Jahreszeit (Sommer, Winter) getrennt gemittelt ... 45
Tabelle 15: Messzeiträume, Niederschlagsmenge und Lufttemperatur an der UFS Schneefernerhaus .. 48
Tabelle 16: Depositionsraten für 6 Indikator-PCB an der UFS im Vergleich zu Messergebnissen aus der Literatur (alle Angaben in ng/m²Tag) 53
Tabelle 17: PAH- Konzentrationen im Niederschlag (ng/l) und Literaturvergleich ... 55
Tabelle 18: Mediane für einige OCP-Depositionsraten separat gemittelt für die Jahre 2005-2007 (MONARPOP) und 2008-2010 (POPALP) 60
Tabelle 19: Konzentration von α-HCH, HCB und 4,4’-DDT im Niederschlag (pg/l) im Vergleich mit Messungen aus der Niigata-Ebene (Japan). Dargestellt sind jeweils Minimum-Maximum .. 60
Tabelle 20: Konzentrationsbereiche von γ-HCH und Endosulfan-I im Schneeschmelzwasser im Vergleich zu den Konzentrationen im Niederschlagswasser (alle Angaben in ng/l) ... 61
Tabelle 21: Zusammenfassung der gemessenen Depositionsraten. Minimum-Maximum und (Median) in ng/m²Tag ... 62
Tabelle 22: Korrekturfaktoren (°C) für die einzelnen Messpunkte ... 65
Tabelle 23: Vergleich der Monatsmittelwerte der Lufttemperatur am Messpunkt BG 1 .. 68
Tabelle 24: Mittlere monatliche Differenz der Hütteninnentemperatur und der Lufttemperatur im Sommer 2009 . 68
Tabelle 25: Expositionszeiträume und Mittelwerte der Lufttemperatur [°C] ... 69
Tabelle 26: PCB Konzentrationen (pg PCB/g Triolein) in Berchtesgaden (BG) am Höhenprofil. SP1: Erstes ½ Jahr Expositionszeit, SP2: zweites ½ Jahr Expositionszeit und SP3: 1 Jahr Expositionszeit (n.n.= nicht nachweisbar) .. 71
Tabelle 27: PAH-Konzentrationen in SPMDs (pg PAH g⁻¹ Triolein) am Höhenprofil Berchtesgaden 75
Tabelle 28: OCP-Konzentrationen in SPMDs (pg Pestizide g⁻¹ Triolein) am Höhenprofil Berchtesgadens (BG). SP1: erstes ½ Jahr, SP2: zweites ½ Jahr, SP3: 1 Jahr. Expositionszeit. n.n. = nicht nachweisbar; n.a. = nicht analysierbar. .. 78
Tabelle 29: OCP-Konzentrationen in SPMDs (pg Pestizide g⁻¹ Triolein) am Höhenprofil Berchtesgadens (BG). SP3: 1 Jahr Expositionszeit. n.n. = nicht nachweisbar n.a. = nicht analysierbar .. 79
Tabelle 30: Kohlenstoffanteil (C-org [%]) im Boden entlang des Höhenprofils NP BG............................. 82
Tabelle 31: pH-Wert (CaCl₂) in den Horizonten der Böden entlang des Höhenprofils NP BG............... 82
Tabelle 32: EROD Ergebnisse (TE pg TCDD g⁻¹ TS) nach 24 und 72 Stunden Inkubation (n=3). n.n.: nicht nachweisbar .. 86
Tabelle 33: Bodenprofil am Standort BG 1 .. 135
Tabelle 34: Bodenprofil am Standort BG 2 .. 136
Tabelle 35: Bodenprofil am Standort BG 3 .. 137
Tabelle 36: Bodenprofil am Standort BG 4 .. 138
Tabelle 37: Bodenprofil am Standort BG 5 .. 139
Tabelle 38: Bodenprofil am Standort BG 6 .. 140
Tabelle 39: Probenprotokolle von den Standorten BG 1, BG 2 und BG 3 .. 141
Tabelle 40: Probenprotokolle von den Standorten BG 4, BG 5 und BG 6 142