Untersuchungen zur endokrinen und toxischen Wirkung von Nonylphenol auf Fische

Teilbericht I

zum Forschungsvorhaben 77e040100

April 2000
Projektleitung:

R.D. Negele

Bearbeitung:

J. Schwaiger, B. Wörle, U. Mallow, H.-G. Hartmann, B. Ott, & H. Ferling

Analytik:

W. Kalbfus, P. Adler, S. Frey & M. Wanzinger
Inhalt

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Einleitung</td>
<td>6</td>
</tr>
<tr>
<td>II. Literaturübersicht</td>
<td>9</td>
</tr>
<tr>
<td>1. Endokrin wirksame Substanzen in der Umwelt</td>
<td>9</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1.1 Definition: Chemikalien mit endokriner Wirkung (Endocrine Disruptors)</td>
<td>9</td>
</tr>
<tr>
<td>1.2 Rückblick: Endokrin wirksame Substanzen</td>
<td>11</td>
</tr>
<tr>
<td>1.3 Endokrine Steuerung der Reproduktion</td>
<td>13</td>
</tr>
<tr>
<td>1.3.1 Die Hypothalamus-Hypophysen-Gonaden-Achse</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2 Die Bindung an den Östrogen-Rezeptor</td>
<td>14</td>
</tr>
<tr>
<td>1.3.3 Morphologie und Funktion der männlichen Gonaden</td>
<td>14</td>
</tr>
<tr>
<td>1.3.4 Morphologie und Funktion der weiblichen Gonaden</td>
<td>15</td>
</tr>
<tr>
<td>1.3.5 Die Geschlechtsdifferenzierung</td>
<td>15</td>
</tr>
<tr>
<td>1.4 Testverfahren zur Bestimmung der endokrinen/östrogenen Wirkung von Umweltchemikalien</td>
<td>16</td>
</tr>
<tr>
<td>1.5 Relative Potenz von östrogen wirksamen Stoffen</td>
<td>19</td>
</tr>
<tr>
<td>2. Substanzcharakterisierung: Nonylphenol</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Chemische Struktur</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Physikalische und chemische Eigenschaften</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Stoffspezifische Vorschriften</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Produktion und Anwendung</td>
<td>23</td>
</tr>
<tr>
<td>3. Umweltverhalten</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Biotransformation und Umweltrelevanz</td>
<td>27</td>
</tr>
<tr>
<td>3.1.1 Nonylphenol und andere Alkylphenole</td>
<td>27</td>
</tr>
<tr>
<td>3.1.2 Natürliche und synthetische Östrogene</td>
<td>29</td>
</tr>
<tr>
<td>3.2 Umweltbelastung</td>
<td>30</td>
</tr>
<tr>
<td>4. Bioakkumulation und Metabolismus</td>
<td>33</td>
</tr>
<tr>
<td>5. Toxizität von Nonylphenol sowie natürlichen und synthetischen Östrogenen</td>
<td>35</td>
</tr>
<tr>
<td>5.1 Toxizität bei aquatischen Organismen</td>
<td>35</td>
</tr>
<tr>
<td>5.2 Toxizität bei Säugetieren</td>
<td>37</td>
</tr>
<tr>
<td>5.3 Mutagene und kanzerogene Wirkungen</td>
<td>39</td>
</tr>
<tr>
<td>6. Endokrine/östrogene Wirkungen von Nonylphenol sowie natürlichen und synthetischen Östrogenen</td>
<td>40</td>
</tr>
<tr>
<td>6.1 Östrogenrezeptorbindung</td>
<td>42</td>
</tr>
<tr>
<td>6.2 In vitro Effekte an MCF-7 Zellen</td>
<td>43</td>
</tr>
<tr>
<td>6.3 Stimulierung der Vitellogeninsynthese bei Fischen</td>
<td>44</td>
</tr>
<tr>
<td>6.4 Effekte auf den Hormonhaushalt</td>
<td>46</td>
</tr>
<tr>
<td>6.5 Beeinflussung des Geschlechtsapparates und der Reproduktion von Fischen</td>
<td>47</td>
</tr>
</tbody>
</table>
III. Material und Methoden

1. Expositionsdesign
 1.1 Expositionsbedingungen
 1.2 Testwasser
 1.3 Durchführung der Expositionen

2. Untersuchungsparameter
 2.1 Toxikologische Untersuchungen
 2.1.1 Verhaltensstudien an juvenilen Karpfen (Versuch C)
 2.1.2 Hämatologische Untersuchungen (Versuch A bis D)
 2.1.3 Klinische Chemie (Versuch A und B)
 2.1.4 Histopathologie der Organe (Versuch A bis D)
 2.1.5 Elektronenmikroskopie (Versuch A bis D)
 2.1.6 Rückstandsanalytik (Versuch A bis C)
 2.1.8 Genotoxikologische Untersuchungen (Versuch G und H)
 2.2 Endokrinologische und reproductionstoxische Untersuchungen
 2.2.1 Beurteilung des Reproduktionserfolgs (Versuch A, B und F)
 2.2.2 Untersuchungen zur Larval-Entwicklung (Versuch A, B und F)
 2.2.3 Untersuchungen zur Geschlechtsdifferenzierung und Gonadenentwicklung
 (Versuch E und F)
 2.2.4 Quantitativ-stereologische Untersuchungen zum Funktionszustand der
 Hypophyse (Versuch A, B und E)
 2.2.5 Bestimmung von 17ß-Östradiol (Versuch A und B)
 2.2.6 Bestimmung von Vitellogenin im Blutplasma (Versuch A bis E)
 2.2.7 Immunhistochemische Darstellung von Vitellogenin in der Leber (Versuch A
 und B)

IV. Ergebnisse

1. Allgemeine Untersuchungen
2. Spezielle Untersuchungsergebnisse
 2.1 Toxikologische Untersuchungen
 2.1.1 Verhaltensstudien an juvenilen Karpfen (Versuch C)
 2.1.2 Hämatologische Untersuchungen (Versuch A bis D)
 2.1.3 Klinisch-chemische Untersuchungen (Versuch A und B)
 2.1.4 Histopathologische Untersuchungsbefunde (Versuch A bis D)
 2.1.5 Elektronenmikroskopische Befunde (Versuch A bis D)
 2.1.6 Nonylphenol-Rückstände im Fischgewebe (Versuch A bis C)
 2.1.7 Ergebnisse der Studie zur Pharmakokinetik von Nonylphenol (Versuch I)
 2.1.8 Ergebnisse der genotoxikologischen Untersuchungen (Versuch G und H)
2.2 Reproduktionstoxikologische und endokrinologische Untersuchungen _______ 135
2.2.1 Ergebnisse der Reproduktionsstudien (Versuch A, B und F) __________ 135
2.2.2 Ermittlung von Mortalität und Mißbildungen (Versuch A, B und F) _______ 139
2.2.3 Geschlechtsdifferenzierung und Gonadenentwicklung (Versuch E und F)_ 142
2.2.4 Quantitativ-stereologische Untersuchungen zum Funktionszustand der Hypophyse adulter und juveniler Regenbogenforellen (Versuch A, B und E) __ 155
2.2.5 17ß-Östradiol-Gehalt im Blutplasma (Versuch A und B) _______________ 155
2.2.6 Vitellogenin-Gehalt im Blutplasma (Versuch A bis E) _________________ 155
2.2.7 Immunhistochemische Lokalisation von Vitellogenin in den Hepatozyten (Versuch A und B) ___ 155

V. Diskussion ___ 158
1. Allgemeine Untersuchungen __ 158
2. Spezielle Untersuchungen ___ 158
2.1 Toxikologische Untersuchungen __ 158
2.1.1 Verhaltensstudien __ 158
2.1.2 Hämatologische Untersuchungen ____________________________________ 159
2.1.3 Klinisch-chemische Untersuchungen _________________________________ 161
2.1.4 Histopathologie der Organe __ 163
2.1.5 Elektronenmikroskopie ___ 166
2.1.6 Rückstandsanalytik __ 166
2.1.7 Pharmakokinetik ___ 167
2.1.8 Genotoxikologische Untersuchungen _______________ 167
2.2 Endokrinologische und reproduktionstoxikologische Untersuchungen ______ 168
2.2.1 Reproduktionserfolg __ 168
2.2.2 Mortalität und Mißbildungen __ 169
2.2.3 Geschlechtsdifferenzierung und Gonadenentwicklung ____________________ 170
2.2.4 Funktionszustand der Hypophyse ___________________________________ 172
2.2.5 17ß-Östradiol-Gehalt im Blutplasma __________________________________ 172
2.2.6 Vitellogeningehalt im Blutplasma (Versuch A bis E) __________________ 172
2.2.7 Immunhistochemische Lokalisation von Vitellogenin in den Hepatozyten _ 173

VI. Zusammenfassung ___ 174
VII. Literatur___ 177
I. Einleitung

Die bisherige Datenlage weist somit deutliche Informationsdefizite bezüglich folgender Gesichtspunkte auf:

Stellt Nonylphenol in umweltrelevanten Konzentrationen ein Gefährdungspotential im Hinblick auf endokrine sowie toxische Wirkungen bei Fischen dar?
Welcher Zeitraum der Einwirkung ist entscheidend für die Entstehung morphologischer oder funktioneller Veränderungen?

In welchem Entwicklungsstadium manifestieren sich die Veränderungen?

Besitzen die beobachteten Effekte eine biologische Relevanz für die Erhaltung freilebender Fischpopulationen?

genannten Institutionen, die nicht in vorliegendem Bericht dargestellt werden, sind Teilbericht II sowie den beiliegenden Dissertationen (NARDY, 1999; von der HEYDE, 2000) zu entnehmen. Die Untersuchungen erfolgten im Auftrag des Bayerischen Staatsministeriums für Landesentwicklung und Umweltfragen (StMLU), dem an dieser Stelle für die finanzielle Unterstützung gedankt sei.
II. Literaturübersicht

1. Endokrin wirksame Substanzen in der Umwelt

1.1. Definition: Chemikalien mit endokriner Wirkung (Endocrine Disruptors)

Unter der Bezeichnung “Chemikalien mit endokriner Wirkung“ sind grundsätzlich Substanzen zu verstehen, die das hormonelle Gleichgewicht von Mensch und Tier stören können. Nach einem Bericht des Umweltbundesamtes (UBA, 1997a) unterscheidet man zwischen endokrinen Disruptoren, deren Wirksamkeit in vivo nachgewiesen wurde, und potentiellen endokrinen Disruptoren, bei denen es Hinweise darauf gibt, daß diese Stoffe Auswirkungen auf das Hormonsystem haben könnten. Eine Definition zuständiger EU-Gremien (EUROPEAN COMMUNITY, 1997) lautet ähnlich: „An endocrine disruptor is an exogenous substance that causes adverse health effects in an intact organism, or its progeny, secondary to changes in endocrine function. A potential endocrine disruptor is a substance that possesses properties that might be expected to lead to endocrine disruption in an intact organism“. Allgemein wird folgende Übersetzung dieser in Europa akzeptierten Definition von Stoffen mit endokrinem Wirkungspotential vorgeschlagen: „Eine endokrin wirksame Substanz ist ein exogener Stoff, der Veränderungen im endokrinen System des intakten Organismus hervorruft und dadurch entweder auf den Organismus selbst oder auf die Nachkommen gesundheitsschädlichen Einfluß ausübt“. Die Möglichkeiten der Einflußnahme auf das Hormonsystem sind sehr vielfältig, je nachdem, welche hormonellen Regelkreise vorrangig von der Wirkung der Chemikalien betroffen sind. Störende hormonelle Effekte können neben dem Reproduktionssystem auch andere endokrine Systeme betreffen, wie z.B. Schilddrüsen- oder Nebennieren system. Beschränkt man sich auf Chemikalien, die das Potential besitzen, in das komplexe System der Sexualsteroidhormone eingreifen, so sind 4 Stoffgruppen zu unterscheiden:
- Chemikalien mit östrogener Wirkung (Agonisten des weiblichen Sexualhormons 17ß-Estradiol)
- Chemikalien mit antiöstrogener Wirkung (Antagonisten des weiblichen Sexualhormons 17ß-Estradiol)
- Chemikalien mit androgener Wirkung (Agonisten des männlichen Sexualhormons Testosteron)
Chemikalien mit antiandrogener Wirkung (Antagonisten des männlichen Sexualhormons Testosteron)

Nach Angaben des Umweltbundesamtes (UBA, 1997a, 1997b) werden folgende Substanzen als Chemikalien mit östrogener Aktivität eingestuft:

- Diphenylmethan-Derivate
- DDT und Metabolite
- Methoxychlor und Derivate
- Phenylhydroxyphenylmethan
- Bis(hydroxyphenyl)methan und Derivate
- Diphenylethan-, -ethylen- und -propan-Derivate
- Diphenylether
- Triphenylmethan- und -ethylen-Derivate
- Dibenzodioxine
- Biphenyle, chloriert und nicht chloriert
Chlorierte Terphenyle
Polyzyklische aromatische Kohlenwasserstoffe
Naphthole und Derivate
Phenylsiloxane
Chlorierte Cyclodiene und Camphene
Phthalsäureester
Alkylphenole und Derivate
3,4-Dichloranilin
Linuron
Vinclozolin
α- und β-HCH
Synthetische Östrogene

Neben den genannten, synthetischen Substanzen gelangen auch natürliche Verbindungen mit östrogener Aktivität in die aquatische Umwelt. Als natürliche Verbindungen mit östrogener Aktivität gelten:

Endogene Östrogene
17ß-Estradiol, Estriol, Estron

Phytoöstrogene und Mykotoxine
Isoflavone (Daidzein, Genistein, Biochanin A, Equol)
Coumestane (Coumestrol)
Sterole (ß-Sitosterol)
Lignane (Matairesinol, Enterolacton)
Resorcylsäure-Lactone (Zearalenon)

1.2. **Rückblick: Endokrin wirksame Substanzen**

1.3. Endokrine Steuerung der Reproduktion

1.3.1 Die Hypothalamus-Hypophysen-Gonaden-Achse

Die gonadalen Geschlechtshormone üben über Feedback-Mechanismen einen stimulierenden bzw. hemmenden Einfluß auf die übergeordneten Regulationszentren Hypothalamus und Hypophyse aus.

1.3.2 Die Bindung an den Östrogen-Rezeptor

Auf die selbe Weise können östrogen wirksame Chemikalien an die Östrogenrezeptoren binden und eine ähnliche Wirkung wie Östrogene selbst hervorrufen (Agonismus, Förderung der Genexpression), oder aber die Bindungsstellen blockieren und dadurch die östrogene Wirkung hemmen (Antagonismus, Hemmung der Genexpression).

1.3.3 Morphologie und Funktion der männlichen Gonaden

Die paarigen Hoden besitzen bei den meisten Fischarten eine lobuläre Struktur. Sie bestehen aus samenbildenden Hodenläppchen (Lobuli seminiferi), die durch interstitielles Bindegewebe getrennt werden, und sind von einer dünnen Kapsel umgeben (NAGAHAMA, 1983). Die einzelnen Lobuli beinhalten sogenannte Spermatozysten, welche kugelförmige Einheiten aus Keimzellen und Sertolizellen darstellen. Über ein zentrales Lumen der Lobuli werden die rei-

1.3.4 Morphologie und Funktion der weiblichen Gonaden

1.3.5 Die Geschlechtsdifferenzierung

1.4. Testverfahren zur Bestimmung der endokrinen/östrogenen Wirkung von Umweltchemikalien

Kann eine Substanz östrogenspezifische Wirkungen in einer Zelle, in einem Organ/Gewebe oder in einem Organismus auslösen, so spricht man von einem östrogenspezifischen Potential dieser Substanz. Dabei ist es nicht unbedingt möglich von der chemischen Struktur auf eine östrogene Wirksamkeit eines Stoffes zu schließen, da sich sowohl strukturell ähnliche Verbindungen stark in ihrer östrogenen Aktivität unterscheiden können als auch ganz unterschiedlich aufgebaute Verbindungen mit östrogener Aktivität bekannt sind.

Tabelle 1: Toxizitätstests nach OECD-Richtlinien (nach HOFER & LACKNER, 1995)

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Testobjekt</th>
<th>Dauer</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundstufe</td>
<td>Zebrabärbling (Brachydanio rerio)</td>
<td>48-96 Stunden</td>
<td>Akute Mortalität (LC₅₀)</td>
</tr>
<tr>
<td>Akute Toxizität</td>
<td>Wassermöllchen (Daphnia magna)</td>
<td>24-48 Stunden</td>
<td>Hemmung der Schwimmfähigkeit</td>
</tr>
<tr>
<td>Stufe 1</td>
<td>Grünalge (Scenedesmus subspicatus)</td>
<td>72 Stunden</td>
<td>Hemmung des Populationswachstums</td>
</tr>
<tr>
<td>Algentoxizität</td>
<td>Wassermöllchen (Daphnia magna)</td>
<td>mindestens 21 Tage</td>
<td>NOEC, Schwellenkonzentration für Reproduktion und Mortalität</td>
</tr>
<tr>
<td>Langfristige Toxizität</td>
<td>Zebrabärbling (Brachydanio rerio)</td>
<td>14-28 Tage</td>
<td>NOEC, Schwellenkonzentration für letale und subletale Wirkung (Verhalten, Aussehen)</td>
</tr>
<tr>
<td>Stufe 2</td>
<td>Zebrabärbling (Brachydanio rerio)</td>
<td>Ein kompletter Generationzyklus (F₁) inklusive Larvenstadien der F₂-Generation</td>
<td>NOEC, Mortalität und Reproduktionserfolg, morphologische und ethologische Veränderungen, Wachstum</td>
</tr>
</tbody>
</table>

- Gonadosomatischer Index (GSI)
- Sekundäre Geschlechtsmerkmale
• Keimzellreifung
• Geschlechtshormon-Spiegel im Plasma
• Vitellogenin-Spiegel im Plasma
• Gonadenhistologie
• Befruchtungserfolg
• Geschlechtsdifferenzierung bei Nachkommen exponierter Tiere

1.5. Relative Potenz von östrogen wirksamen Stoffen

Tabelle 2: Bestimmung der relativen Potenz östrogen wirksamer Substanzen im Vergleich zu 17ß-Estradiol (E2) anhand verschiedener in vitro Untersuchungsmethoden

<table>
<thead>
<tr>
<th>Substanz</th>
<th>E-Screen (MCF-7)</th>
<th>E-Screen (MCF-7)</th>
<th>RCBA (Hefezellen)</th>
<th>ER (MCF-7)</th>
<th>ER (Catfish-Leberzytosol)</th>
<th>VG (Forellen-Hepatozyten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>EE2</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DES</td>
<td>10</td>
<td></td>
<td>0,743</td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>Zeralenon</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coumestrol</td>
<td>0,00001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kepon</td>
<td>0,000001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDT</td>
<td>0,000001</td>
<td></td>
<td></td>
<td></td>
<td>0,00012</td>
<td></td>
</tr>
<tr>
<td>Bisphenol</td>
<td></td>
<td></td>
<td></td>
<td>0,00006¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>0,001²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-OP</td>
<td>0,0003</td>
<td></td>
<td></td>
<td>0,00072¹</td>
<td>0,000037</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,00029²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-NP</td>
<td>0,00003</td>
<td>0,00005</td>
<td></td>
<td>0,00026¹</td>
<td>0,00049</td>
<td>0,000009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,00039²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP-techn.</td>
<td>0,000003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP2EO</td>
<td></td>
<td></td>
<td></td>
<td>0,000006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP1EC</td>
<td></td>
<td></td>
<td></td>
<td>0,000006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ in serum-freiem Medium; ² in Serum gemessen

E-Screen: Bestimmung der Proliferation östrogensensitiver MCF-7 Zellen (Mammakarzinom-Zellen)
RCBA: Bioassay mit rekombinannten Hefezelllinien (recombinant yeast cell bioassay)
ER: Östrogenrezeptor-Bindungsassay
VG: Bestimmung von Vitellogenin in Hepatozyten der Regenbogenforelle
2. Substanzcharakterisierung: Nonylphenol

2.1 Chemische Struktur

Nonylphenol (NP) gehört zur Gruppe der Alkylphenole und liegt in Form verschiedener Isomere und Homologe vor. Das meist verwendete technische Nonylphenol liegt als Gemisch verzweigter Isomere vor, bestehend aus 98% Isononylphenol mit unterschiedlichen Verzweigungen der C9-Seitenkette und einem Rest von ca. 2% vorwiegend 2,4 Di-nonylphenol. Rohstoffbedingt sind meist noch geringe Anteile von Alkylphenolen mit C8- und C10-Seitenketten enthalten. Die 98% Isononylphenol liegen zu ca. 90% als 4-Nonylphenol vor, mit der Nonylkette am Ring in p-Stellung, und zu ca. 10% als 2-Nonylphenol mit der Nonylkette in o-Stellung zur Hydroxylgruppe.

Die chemischen Bezeichnungen und Stoffnummern des technischen NP und des 4-NP sind in Tabelle 3 zusammengefaßt.

Tabelle 3: Stoffnummern und Synonyme des technischen Nonylphenols und des 4-Nonylphenols (BUA, 1988)

<table>
<thead>
<tr>
<th></th>
<th>Technisches Nonylphenol</th>
<th>4-Nonylphenol</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUPAC-Name:</td>
<td>Phenol, nonyl-</td>
<td>Phenol, 4-nonyl-, branched</td>
</tr>
<tr>
<td>Gebrauchsname:</td>
<td>Nonylphenol, techn. Isononylphenol</td>
<td>4-Nonylphenol, p-Nonylphenol</td>
</tr>
<tr>
<td>Weitere Namen:</td>
<td></td>
<td>1-Hydroxy-4-nonylbenzol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-Hydroxy-4-nonylbenzene</td>
</tr>
<tr>
<td>EEC-Nr.:</td>
<td>246-672-0</td>
<td></td>
</tr>
<tr>
<td>CAS-Nr.:</td>
<td>25 154-52-3</td>
<td>84 852-15-3</td>
</tr>
<tr>
<td>Molmasse:</td>
<td>220,34 g/mol</td>
<td>220,34 g/mol</td>
</tr>
<tr>
<td>Summenformel:</td>
<td>C15H24O</td>
<td>C15H24O</td>
</tr>
<tr>
<td>Index-Nr.:</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>EWG-Nr:</td>
<td>246-672-0</td>
<td></td>
</tr>
<tr>
<td>MAK-Wert</td>
<td>nicht festgelegt</td>
<td></td>
</tr>
</tbody>
</table>
2.2 Physikalische und chemische Eigenschaften

Die in Tabelle 4 angegebenen Daten gelten für das technische Nonylphenol, abweichende Werte für 4-Nonylphenol sind in Klammern angegeben.

Tabelle 4: Physikalische und chemische Eigenschaften des technischen Nonylphenols (bzw. 4-Nonylphenol) (BUA, 1988)

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregatzustand</td>
<td>flüssig, hochviskös/farblos bis gelblich-klar</td>
</tr>
<tr>
<td>Geruch</td>
<td>schwach phenolartig</td>
</tr>
<tr>
<td>Schmelztemperatur</td>
<td>ca. -8°C</td>
</tr>
<tr>
<td>Siedebereich (1013 hPa)</td>
<td>290-302°C (293-297°C)</td>
</tr>
<tr>
<td>Dichte (20°C)</td>
<td>0,95 g/cm³</td>
</tr>
<tr>
<td>Dampfdruck (20°C)</td>
<td><0,01 hPa</td>
</tr>
<tr>
<td>Viskosität (20°C)</td>
<td>ca. 2500 mPa s (3160 mPa s)</td>
</tr>
<tr>
<td>Löslichkeit in Wasser (20°C)</td>
<td>schwer löslich, sehr lipophil, 3 mg/l *</td>
</tr>
<tr>
<td>Flammpunkt DIN 51758:</td>
<td>ca. 155°C (ca.166°C)</td>
</tr>
<tr>
<td>Zündtemperatur DIN 51794:</td>
<td>ca. 370°C (ca.340°C)</td>
</tr>
<tr>
<td>Explosionsgrenzen:</td>
<td>keine, bei Normalbedingungen</td>
</tr>
<tr>
<td>Verteilungskoeffizient (pH 7):</td>
<td>log Pow 3,28 (3,01) *</td>
</tr>
</tbody>
</table>

* Hiervon abweichende Löslichkeitskonzentrationen und log Pow-Werte werden von AHEL & GIGER (1993a) angegeben. So liegt den Autoren zufolge die Löslichkeit in Wasser bei 20,5 °C für NP bei 5,4 mg/l, für NP1EO bei 3,02 mg/l und für NP2EO bei 3,38 mg/l. Für NP wird ein log Pow von 4,48, für NP1EO ein log Pow von 4,17 und für NP2EO ein log Pow von 4,21 angegeben.

2.3 Stoffspezifische Vorschriften

Gemäß der deutschen Gefahrenstoffverordnung (GefStoffV) und der entsprechenden Richtlinie erhält NP die Gefahrensymbole C (= ätzend) und N (= umweltgefährdend) und ist mit den Hinweisen auf besondere Gefahren (R-Sätze) Nr. 22 (= gesundheitsgefährdend beim Ver-
II. Literaturübersicht, Seite 23

schlucken), Nr. 34 (= verursacht Verätzungen) und Nr. 50/53 (= sehr giftig für Wasserorganismen, kann in Gewässern längerfristig schädliche Wirkungen haben) sowie den Sicherheitsratschlägen (S-Sätze) Nr. 26 (= bei Berührung mit den Augen gründlich mit Wasser abspülen und Arzt konsultieren), Nr. 28 (= bei Berührung mit der Haut sofort abwaschen mit viel Wasser und Seife), Nr. 36/37/39 (= bei der Arbeit geeignete Schutzkleidung, Schutzhandschuhe und Schutzbrille/Gesichtsschutz tragen), Nr. 45 (= bei Unfall oder Unwohlsein sofort Arzt hinzuziehen und wenn möglich Etikett vorzeigen) und Nr. 61 (= Freisetzung in die Umwelt vermeiden. Besondere Anweisungen einholen / Sicherheitsdatenblatt zu Rate ziehen) zu kennzeichnen.

2.4 Produktion und Anwendung

Tabelle 5: Anwendung von Nonylphenol (NP) und Nonylphenolethoxylaten (NPEO)
(nach OSPAR, 1994)

<table>
<thead>
<tr>
<th>CAS-Nr.</th>
<th>Substanz</th>
<th>Anwendung als:</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154523</td>
<td>NP</td>
<td>Rohmaterial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Härtungsmittel</td>
</tr>
<tr>
<td>9016459</td>
<td>NPEO</td>
<td>Bindemittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emulgatoren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farb- und Lackzusatz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hilfsmittel in der Metallverarbeitung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinigungs- und Desinfektionsmittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entfettungsmittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benetzungsmittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rohmaterial</td>
</tr>
<tr>
<td>26027383</td>
<td>p-NPEO</td>
<td>Entschäumungsmittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farb- und Lackzusatz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zusatz in Kunststoffen</td>
</tr>
<tr>
<td>37205871</td>
<td>iso-NPEO</td>
<td>Rohmaterial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poliermittel</td>
</tr>
<tr>
<td>68412544</td>
<td>verzweigte NPEO</td>
<td>Rohmaterial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pestizid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dispersionsmittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emulgatoren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flotationsmittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farb- und Lackzusatz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinigungs- und Entfettungsmittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schäumungsmittel</td>
</tr>
<tr>
<td>68891214</td>
<td>verzweigte Di-NPEO</td>
<td>Dispersionsmittel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rohmaterial</td>
</tr>
</tbody>
</table>
APEOs \((C_m H_{2m+1} C_6 H_4 OH (CH_2 CH_2 O)_n)\) bestehen aus einer verzweigten Kette mit mehreren Gliedern \((m = 2-20)\) und einer variierenden Anzahl an Ethylenoxidgruppen \((n = 2 \text{ bis ca. } 80)\), wobei die Stoffe, mit bis zu 10 Ethylenoxidgruppen (z.B. NPEOs) v.a. als Detergenzien, die Substanzen mit bis zu 30 Ethylenoxidgruppen als Emulgatoren und darüber als Dispersionsmittel Verwendung finden. Je länger die Ethylatkette, um so wasserlöslicher ist die Verbindung (OSPAR, 1994). APEOs wurden früher zu einem großen Teil als nichtionische Tenside in Wasch- und Reinigungsmitteln eingesetzt. In Kläranlagen und Klärschlamm entsteht als stabiles Abbauprodukt u.a. der sehr viel toxischere Metabolit 4-iso-NP, welcher von dort aus in die Umwelt gelangt.

1995 betrug der Anteil von NP an den, in Deutschland hergestellten Alkylphenolen etwa 70%. Insgesamt wurden 1995 33.000 t NP hergestellt wovon 20.000t auch in Deutschland
verwendet wurden (LEISEWITZ, 1996). 1997 lag in Deutschland die Produktionskapazität von NP bei ca. 35.000 t/a (ZELLNER & KALBFUS, 1997). 70-80 % wurden zu Nonylphenolethoxylaten umgesetzt, von denen wiederum der größte Teil in Gewerbe- und Industriebereichen eingesetzt wurde. Die weltweite Produktionsmenge von NPEOs wurde vor einigen Jahren auf ca. 300.000 t geschätzt, wovon ca. 100.000 t auf Europa entfielen (OSPAR, 1994). Die APEOs umfassen etwa 6% der totalen Produktionsmenge an oberflächenaktiven Stoffen und 25% der nichtionischen oberflächenaktiven Stoffe in den USA (NIMROD & BENSON, 1996). Die heutigen Nennkapazitäten der wesentlichen NP-Hersteller in Europa betragen zusammen ca. 110.000 t/Jahr (Tabelle 6).

Tabelle 6: Die bedeutendsten Hersteller von Nonylphenol in Europa (HÜLS, persönliche Mitteilung, 1997)

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Land</th>
<th>Kapazität ca. (t/Jahr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HÜLS</td>
<td>Deutschland</td>
<td>35.000</td>
</tr>
<tr>
<td>SISAS</td>
<td>Italien</td>
<td>20.000</td>
</tr>
<tr>
<td>ENI</td>
<td>Italien</td>
<td>25.000</td>
</tr>
<tr>
<td>BEROL</td>
<td>Schweden</td>
<td>10.000</td>
</tr>
<tr>
<td>ICI*</td>
<td>Großbritannien</td>
<td>20.000</td>
</tr>
<tr>
<td>Summe</td>
<td>Europa</td>
<td>110.000</td>
</tr>
</tbody>
</table>

* bis 1996: seit der Stillegung der veralteten Anlagen wird der Bedarf über Schenectady/Schweiz und USA gedeckt

Der derzeitige, weltweite Marktführer ist Schenectady/Schweiz und USA mit einer Nennkapazität von insgesamt ca. 80.000 t/Jahr. Ein weiterer großer Hersteller ist Nizhmekamsk (GUS) mit 100.000 t/Jahr, wobei diese Anlage teils wegen Rohstoffmangels außer Betrieb ist bzw. nur mit Teillast gefahren wird, so daß die realen Produktionsmengen nicht klar sind. Weiterhin wird NP auch in asiatischen Ländern produziert, z.B. mit ca. 25.000 bis 30.000 t/Jahr von HÜLS in Taiwan (HÜLS, persönliche Mitteilung, 1997).

Der Verbrauch von NPEOs in Europa belief sich 1996 auf fast 65.000 t. Der Hauptanteil mit 35% entfiel dabei auf Reinigungsmittel für Industrie und Gewerbe. Weitere Anwendungsbe reiche bestanden in der Textil- (12%) und Lederherstellung (10%), als Komponenten in Agrochemikalien (8%), in der Anwendung als Emulgatoren oder zur Polymerisation, als Bestandteil von Farben (15%) sowie in einer Vielzahl von kleineren Anwendungsbereichen z.B. in der Zement- oder Papierherstellung (restliche 20%) (CESIO, 1997).
3. Umweltverhalten

3.1 Biotransformation und Umweltrelevanz

3.1.1 Nonylphenol und andere Alkylphenole

Nach AHEL et al. (1994a) enthalten Abwässer und primäre Kläranlagenausläufe in der Schweiz beträchtliche Mengen an NP-Derivaten (3,0-9,6 %), längerketttige NPEOs werden dagegen effektiv eliminiert. Der bedenklichste Stoff ist dabei NP, welches hauptsächlich während der anaeroben Klärschlammbehandlung entsteht und über Klärschlammddüngung und Bodenerosion in die Gewässer gelangt. Die im Faulschlamm beobachtete Anreicherung von NP konnte im Laborversuch bestätigt werden (TSCHUI & BRUNNER, 1985).

Über eine effektive Elimination von NPEOs durch mikrobielle Prozesse berichteten Giger et al. (1984, 1986). So ergaben Messungen in Schweizer Kläranlagen das Vorhandensein von NPEOs mit 3-20 Kettengliedern in Konzentrationen von 400 bis 2200 mg/m³ im Rohabwasser und im primären Anlagenauslauf nach mechanischer Reinigung. Über 90% davon konnten durch aerobe Klärschlammbehandlung (Belebungsbecken) eliminiert werden. Eine ähnliche Effektivität ergab sich bei einer Behandlung anderer nichtionischer Oberflächenaktiver Substanzen (BROWN et al., 1987; ZOLLER, 1994). In einer Untersuchung von AHEL et al. (1994d) konnten fast alle kurzketttigen NP- und OP-Polyethoxylate, die einem Abwasser in Konzentrationen von 0,5 bis 2,5 mg/l zugegeben worden waren, temperaturabhängig innerhalb von 6 bis 23 Tagen mit Hilfe von Bakterienkulturen umgewandelt werden. Mit über 90% schien hier die Carboxylierung der Hauptabbauweg zu sein, die Halbwertszeit für die Bio-
transformation betrug dabei 2 bis 3 Tage. In Meerwasser und Sediment verlief der mikrobielle Abbau von \(^{14}\)C-markiertem NP zunächst vergleichsweise langsam, um nach einer Anpassung der Mikroorganismen nach 4 Wochen schneller fortzuschreiten. Nach 58 Tagen waren 50% des \(^{14}\)C-markierten NP abgebaut. Im Sediment war die Abbaurate von Anfang an hoch, sank jedoch bei Sauerstoffmangel (EKELUND et al., 1993).

Neben einer direkten Belastung aquatischer Systeme kann Nonylphenol auch auf Bodenflächen gelangen. Bei der Verwendung von Faulschlamm als Bodenverbesserer gelangt NP auf landwirtschaftlich genutzte Bodenflächen. Im Boden ist NP unter aeroben Bedingungen biologisch mineralisierbar. TROCME et al. (1986) untersuchten in Laborexperimenten den Abbau von 4-NP im Boden, sowie dessen Einfluss auf die Nitrifikation. Die Verfasser befachten den Untersuchungsboden mit Faulschlamm, dem 4-NP zugesetzt worden war. Bei einer Konzentration von 100.000 µg NP/kg wurde NP innerhalb von 40 Tagen zu 92% abgebaut wobei keine Beeinträchtigung der Nitrifikationsvorgänge zu beobachten war. Bei einer NP-Konzentration von 1.000.000 µg/kg wurden nur 60% des NP biologisch abgebaut, die Atmung der Bodenorganismen war vom dritten Versuchstag an gehemmt und die ATP-Analyse ließ auf ein beginnendes Absterben der Bodenorganismen schließen. In späteren Versuchen von MARCOMINI et al. (1989) wurde ebenfalls das Verhalten von aromatischen, nichtionischen grenzflächenaktiven Stoffen in mit Klärschlämmen behandelten Böden und Landstrukturen untersucht. Die anfänglichen Konzentrationen an NP, NP1EO und NP2EO lagen dabei bei 4,7, 1,1 und 0,1 mg pro kg Trockensubstanz. 320 Tage nach der letzten Schlammausbringung ergaben sich Werte von nur mehr 0,5 ng NP/kg, 0,1 ng NP1EO/kg und 0,01 ng NP2EO/kg. Die genannten Nonylphenolpolyethoxylat-Metabolite zeichneten sich durch einen raschen aeroben Abbau innerhalb des ersten Monats nach Ausbringung aus. Die Ausbringung mittels Flüssigsprühverfahren beschleunigte die aeroben Abbauvorgänge (SEDLAK & BOOMAN, 1986; GIGER et al., 1986).

3.1.2 Natürliche und synthetische Östrogene

3.2 Umweltbelastung

onsdaten aus Deutschland angegeben, welche in einem Bericht des Umweltbundesamtes zusammengefaßt wurden (UBA, 1997a). Expositionsdaten für das Ausland sind Tabelle 7 zu entnehmen.

Tabelle 7: Nonylphenol und weitere Abbauprodukte von Nonylphenolpolyethoxylaten in europäischen Abwässern und Oberflächengewässern (nach UBA, 1997a)

<table>
<thead>
<tr>
<th>Ort</th>
<th>Substanz</th>
<th>Min.</th>
<th>Max.</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserkonzentrationen (µg/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweiz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kläranlagenausläufe</td>
<td>NP</td>
<td>2,2</td>
<td>44</td>
<td>AHEL et al., 1994 a</td>
</tr>
<tr>
<td>1983-1985</td>
<td>NP1EO+NP2EO</td>
<td>2,86</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP1EC+NP2EC</td>
<td>87</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>Flußwasser</td>
<td>NP</td>
<td><0,3</td>
<td>45</td>
<td>AHEL et al., 1994 b</td>
</tr>
<tr>
<td>1983-1986</td>
<td>NP1EO</td>
<td><3</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP2EO</td>
<td><0,3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP1EO</td>
<td><1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP2EC</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>NP</td>
<td><0,04</td>
<td></td>
<td>AHEL & GIGER, 1998</td>
</tr>
<tr>
<td>England</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kläranlagenausläufe</td>
<td>NP</td>
<td>0,1</td>
<td>5,4</td>
<td>BLACKBURN & WAL-DOCK, 1995</td>
</tr>
<tr>
<td>1994</td>
<td>NP</td>
<td><0,2</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Flußwasser</td>
<td>NP</td>
<td>0,2</td>
<td>53</td>
<td>BLACKBURN & WAL-DOCK, 1995</td>
</tr>
<tr>
<td>1994</td>
<td>NP</td>
<td>0,2</td>
<td>180</td>
<td>DOCK, 1995</td>
</tr>
<tr>
<td>Schottland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kläranlagenausläufe</td>
<td>NP</td>
<td><0,7</td>
<td>37</td>
<td>PIRIE et al., 1996</td>
</tr>
<tr>
<td>1996</td>
<td>NP2EO</td>
<td><1,8</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPNEO</td>
<td>2</td>
<td>1883</td>
<td></td>
</tr>
<tr>
<td>Abzugskanäle</td>
<td>NP</td>
<td><1</td>
<td>26</td>
<td>PIRIE et al., 1996</td>
</tr>
<tr>
<td>1996</td>
<td>NP2EO</td>
<td><1,8</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPNEO</td>
<td>4</td>
<td>1434</td>
<td></td>
</tr>
<tr>
<td>Sedimentkonzentration (µg/kg TS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweiz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flußsediment</td>
<td>NP</td>
<td>190</td>
<td>13100</td>
<td>AHEL et al., 1994 b</td>
</tr>
<tr>
<td>1984</td>
<td>NP1EO</td>
<td>100</td>
<td>8850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP2EO</td>
<td>80</td>
<td>2720</td>
<td></td>
</tr>
</tbody>
</table>
4. Bioakkumulation und Metabolismus

Aufgrund der, mit einem log Pow von 4,2 (McLEESE et al., 1981), relativ hohen Lipophilität ist für NP mit einem deutlichen Bioakkumulationspotential zu rechnen. In Tabelle 8 sind Bio-
konzentrationsfaktoren von NP sowie den entsprechenden Ethoxylaten bei verschiedenen a-
quatischen Organismen zusammengestellt. Nach Untersuchungen von EKELUND et al. (1990) an Meerestieren, liegt der Biokonzentrationsfaktor (BCF) für Muscheln (Mytilus edulis) bei 3400, für Shrimps hingegen bei 680. Der an Fischen der Gattung Gasterostus aculeatus (Stichlinge) ermittelte BCF betrug 1300. Bei Shrimps und Fischen ergab sich nach 16-
tägiger Exposition ein konstanter Gehalt von 0,6-0,7 mg NP/kg Körpergewicht (Shrimps) bzw. 6 mg NP/kg KG (Fische), welcher nach Expositionsende innerhalb weniger Tage deut-
lich abnahm. Bei Muscheln betrugen die NP-Gehalte im Gewebe zum Zeitpunkt des Exposi-
tionsendes ca. 20 mg/kg KG und stiegen danach weiter an. Untersuchungen zum Bioakkumu-
lationsverhalten von 4-NP bei Lachsen ergaben einen BCF von 280 (McLEESE et al., 1981). Bei Regenbogenforellen, die unter statischen Versuchsbedingungen über 14 Stunden radioakt-
viv markiertem NP in einer Konzentration von 36 ppb ausgesetzt waren, wurden die höchsten
Gehalte an 14C-NP in Leber, Niere, Fett und Galle festgestellt, während in Kiemen, Herz und
Muskel deutlich weniger NP zu finden war. Die durchschnittliche Halbwertszeit von NP wur-
de nach 18-stündiger Exposition in 18 ppb NP für Muskel und Fett mit 19 bis 20 Stunden, für
die Leber mit nur 6 Stunden angegeben. Die Elimination von NP erfolgte, nach Oxidation und
beschrieben anhand einer oralen Einzeldosis von 5 mg radioaktivem NP an Regenbogenforel-
 len, daß 3% des Stoffes innerhalb von 48 Stunden über den Urin ausgeschieden wurden. Eine
andere, an Ratten durchgeführte Studie zur Pharmakokinetik von NP ergab, daß 14C-
markiertes NP nach oraler oder intraperitonealer Verabreichung zu 70 % im Kot und zu 19 %
im Urin ausgeschieden wurde (KNAAK et al., 1966).

Bei der Metabolisierung von 4-NP und Steroidhormonen im Organismus von Säugetieren und
Fischen handelt es sich nach AUTERHOFF et al. (1994) um eine sogenannte Biotransforma-
tion. Die hierfür wichtigsten Organe sind die Niere und die Leber. Die für die Biotransforma-
tion verantwortlichen Enzyme sind im Membransystem des rauhen und glatten endoplasmati-
schen Retikulums integriert. Als sogenannte Mikrosomen werden die bei der fraktionierten
Zentrifugation von Leberzellhomogenaten entstehenden Bruchstücke des endoplasmatischen
Retikulums bezeichnet. Zu den mikrosomalen Enzymen zählen neben den Monoxygenasen
auch die Glukuronsäuretransferasen und Glutathiontransferasen. Nach erfolgter Biotransformati-
on werden die Metabolite in den Hohlräumen des endoplasmatischen Retikulums angerei-
chert, von dort zum Golgi-Apparat transportiert und dann entweder in die Galle oder ins Blut abgegeben. Die Biotransformation dient der Überführung von Substanzen in eine wasserlösliche Form, was für eine Ausscheidung über die Niere oder die Leber von essentieller Bedeutung ist.

Tabelle 8: Bioakkumulation von NP, NP1EO und NP2EO

<table>
<thead>
<tr>
<th>Testorganismen</th>
<th>Stoff</th>
<th>BCF</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grünalgen</td>
<td>NP</td>
<td>6.600 - 10.000</td>
<td>AHEL et al., 1993</td>
</tr>
<tr>
<td>(Cladophora glomerata)</td>
<td>NP1EO</td>
<td>200 - 5.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP2EO</td>
<td>500 - 1.800</td>
<td></td>
</tr>
<tr>
<td>Muschel (Mytilus edulis)</td>
<td>NP</td>
<td>1.4 - 13</td>
<td>McLEESE et al., 1980A</td>
</tr>
<tr>
<td>Muschel (Mytilus edulis)</td>
<td>NP1EO</td>
<td>3.400</td>
<td>EKELUND et al., 1990</td>
</tr>
<tr>
<td>Krebs (Crangon crangon)</td>
<td>NP</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Stichling (Gasterostus aculcatus)</td>
<td>NP</td>
<td>1.300</td>
<td></td>
</tr>
<tr>
<td>Fische</td>
<td>NP</td>
<td>13 - 408</td>
<td>AHEL et al., 1993</td>
</tr>
<tr>
<td>(Squalinus cephalus und Barbus barbus)</td>
<td>NP1EO</td>
<td>3 - 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NP2EO</td>
<td>3 - 326</td>
<td></td>
</tr>
<tr>
<td>Karpfen</td>
<td>NP-Isomere</td>
<td>100</td>
<td>KAWASAKI, 1980</td>
</tr>
<tr>
<td>Lachs (Salmo salar)</td>
<td>NP</td>
<td>280</td>
<td>MCLEESE et al., 1981</td>
</tr>
<tr>
<td>Regenbogenforelle (Oncorhynchus mykiss)</td>
<td>NP</td>
<td>25 - 100</td>
<td>LEWIS & LECH, 1996</td>
</tr>
</tbody>
</table>

In der Phase-I-Reaktion erfolgt eine Hydroxylierungsreaktion. Dabei wird die abzubauende Substanz, z.B. NP, zunächst an Cytochrom P-450 mit 3-wertigem Eisen (Fe) gebunden. Nun erfolgt, unter Oxidation von NADPH, über eine Elektronentransferkette die Übertragung eines Elektrons auf das Eisen, so daß dieses 2-wertig wird. Nach Anlagerung von molekularem Sauerstoff und Aufnahme eines weiteren Elektrons über eine zweite Transferkette zerfällt der tertiäre Komplex unter Regeneration von Cytochrom P-450 zu hydroxyliertem NP (NP-OH) und Wasser (H₂O). In der sich anschließenden Phase-II-Reaktion werden nun NP oder auch die hydroxylierten Steroidhormone mit größeren, körpereigenen Molekülen, wie Glukuronsäuren und Glutathion konjugiert und können somit als wasserlösliche Endprodukte über die Galle oder den Urin ausgeschieden werden. Die Phase-II-Reaktionen werden durch verschiedene Transferasen, wie beispielsweise die Glutathions-S-Transferase (GST) und die UDP-Glucuronosyl-Transferase (UDPGT) katalysiert, welche ebenfalls in den Mikrosomen lokalisiert sind (GEORGE, 1994; MELDAHL et al., 1996; ARUKWE et al., 1997).

5. Toxizität von Nonylphenol sowie natürlichen und synthetischen Östrogenen

5.1 Toxizität bei aquatischen Organismen

Ein mit Kleinkrebsen der Gattung Mysidopsis bahia durchgeführter Reproduktionstest ergab für NP eine NOEC von 6,7 µg NP/l (NAYLOR et al., 1992). Bei Flagellaten führten NP-Konzentrationen von 0,5-0,7 ppm nach einstündiger Expositionsdauer bereits zu Deformationen. Während nach Einwirkung von 0,5 ppm die Photosynthese zu 54% gehemmt wurde, führten 0,7 ppm bereits zu einer 100%igen Hemmung. (BUA, 1988). Auch im Leuchtbakterientest erwies sich NP als deutlich toxischer als EE2. So lag die EC10 für 4-iso-NP bei 0,76 mg/l während sie für EE2 mit 12,6 mg/l angegeben wurde. Im Rahmen eines Wachstumstests mit der Grünalge Scenedesmus subspicatus wurden ähnliche Beobachtungen gemacht. So lag nach 72-stündiger Testdauer die NOEC für NP bei 0,003 mg/l, für EE2 hingegen bei 0,054 mg/l (KOPF et al., 1997). In vitro Studien ergaben ähnliche Befunde. In einem Neutralrottest mit R1- und RTG-2 Fischzelllinien wurden u. a. NP, OP, E2 und EE2 getestet. NP wies dabei die stärkste Zytotoxizität auf, während Östradiol keine zytotoxische Wirkung erkennen ließ (ENSENBACH et al., 1998).

5.2 Toxizität bei Säugetieren

Tabelle 9: Toxizität (LC50) von Nonylphenol bei verschiedenen Spezies (modifiziert nach BUA, 1988)

<table>
<thead>
<tr>
<th>Art</th>
<th>TTest-dauer (Std.)</th>
<th>LC50 (mg/l)</th>
<th>Test-Kon- ditionen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Süßwasser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dickkopf-Elritze</td>
<td>48</td>
<td>0,164</td>
<td>DT</td>
<td>HOLCOMBE et al. (1984)</td>
</tr>
<tr>
<td>(Pimephales promelas)</td>
<td>72</td>
<td>0,137</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>0,135</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>0,3</td>
<td>n.b.</td>
<td>MONSANTO (1985)</td>
</tr>
<tr>
<td>Regenbogenforelle</td>
<td>96</td>
<td>0,23</td>
<td>ST</td>
<td>McLEEESE et al. (1980b)</td>
</tr>
<tr>
<td>(Salmo gairdneri)</td>
<td></td>
<td>0,56-0,92</td>
<td></td>
<td>ERNST et al. (1980)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachsaibling</td>
<td>96</td>
<td>0,145</td>
<td>n.b.</td>
<td>McLEEESE et al. (1980b)</td>
</tr>
<tr>
<td>(Salvelinus fontinalis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldorfe</td>
<td>48</td>
<td>0,56</td>
<td>n.b.</td>
<td>HÜLS (1996)</td>
</tr>
<tr>
<td>(Leuciscus idus melanotus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medaka</td>
<td>48</td>
<td>1,4</td>
<td>n.b.</td>
<td>YOSHIMURA (1986)</td>
</tr>
<tr>
<td>(Oryzias latipes)</td>
<td></td>
<td>11,2 (NP9EO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>110,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Süßwassermuschel</td>
<td>144</td>
<td>5,0</td>
<td>ST</td>
<td>McLEEESE et al. (1980b)</td>
</tr>
<tr>
<td>(Anodonta cataractae)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wasserfloh</td>
<td>24</td>
<td>0,48</td>
<td>n.b.</td>
<td>MONSANTO (1985)</td>
</tr>
<tr>
<td>(Daphnia magna)</td>
<td>48</td>
<td>0,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0,18</td>
<td>ST</td>
<td>BRINGMANN & KÜHN (1982)</td>
</tr>
<tr>
<td>(Daphnia pulex)</td>
<td>24</td>
<td>0,14-0,19</td>
<td>ST</td>
<td>Ernst et al. (1980)</td>
</tr>
<tr>
<td>Grünalge</td>
<td>24</td>
<td>1,5</td>
<td>ST</td>
<td>WEINBERGER & REA (1982)</td>
</tr>
<tr>
<td>(Chlorella pyrenoidosa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alge</td>
<td>96</td>
<td>0,027</td>
<td>n.b.</td>
<td>NAYLOR et al. (1992)</td>
</tr>
<tr>
<td>(Skelatonema costatum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salzwasser</td>
<td>96</td>
<td>0,13-0,19</td>
<td>DT</td>
<td>McLEEESE et al. (1981)</td>
</tr>
</tbody>
</table>
II. Literaturübersicht, Seite 39

<table>
<thead>
<tr>
<th>Art</th>
<th>Durchfluß (DT)</th>
<th>Mutagenitätstest (ST)</th>
<th>n.b.</th>
<th>Autor und Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Salmo salar)</td>
<td>0,9</td>
<td>ST</td>
<td></td>
<td>McLEESE et al. (1980b)</td>
</tr>
<tr>
<td>Sandkrabbe</td>
<td>96</td>
<td>0,3</td>
<td></td>
<td>McLEESE et al. (1981)</td>
</tr>
<tr>
<td>(Crangon septemspinosa)</td>
<td>0,4</td>
<td>ST</td>
<td></td>
<td>McLEESE et al. (1980b)</td>
</tr>
<tr>
<td>Hummer</td>
<td>96</td>
<td>0,2</td>
<td></td>
<td>McLEESE et al. (1980b)</td>
</tr>
<tr>
<td>(Homarus americanus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muschel (Maya arenaria)</td>
<td>360</td>
<td>1,0</td>
<td>n.b.</td>
<td>GRANMO et al. (1989)</td>
</tr>
<tr>
<td>Muschel (Mytilus edulis)</td>
<td>96</td>
<td>3,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>0,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>0,14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DT: Durchfluß-Test; ST: Statischer Test; n.b.: nicht bekannt

5.3 Mutagene und kanzerogene Wirkungen

6. **Endokrine/östrogene Wirkungen von Nonylphenol sowie natürlichen und synthetischen Östrogenen**

Hinsichtlich der östrogenen Aktivität von Alkylphenolen wurden vom UBA (1997) folgende Punkte zusammengefaßt:

- Alkylphenole sind nur dann östrogen aktiv, wenn sich die Alkylgruppe in para-Stellung befindet. Ortho- bzw. meta-substituierte Verbindungen sind im allgemeinen inaktiv.

- Die Länge der Alkylkette ist insofern von Bedeutung, als Gruppen mit weniger als 4 Kohlenstoffatomen inaktiv sind. Bei Phenolen, die mit Alkylgruppen mit 4 oder mehr Kohlenstoffen substituiert sind, ist der Einfluß der Kettenlänge auf die östrogene Potenz in den unterschiedlichen Testsystemen nicht ganz einheitlich.

- Auch bei Alkylphenolethoxylaten ist die Länge der Seitenkette für die östrogene Aktivität von Bedeutung: Verbindungen mit mehr als 3 Ethoxygruppen sind inaktiv. Da auch kurzkettige Ethoxylate nicht an Östrogenrezeptoren binden, ist es überdies möglich, daß sie erst zu Alkylphenolen abgebaut werden müssen (WHITE et al., 1994).

In Tabelle 10 sind die bisher nachgewiesenen, östrogenen Wirkungen von Alkylphenolen und deren Derivaten zusammengefaßt. In den darauf folgenden Kapiteln wird detailliert auf die wesentlichen endokrinen Effekte der Alkylphenole und anderer Xenohormone eingegangen.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Wirkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In vivo</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>4-sec. Butylphenol</td>
<td>x</td>
</tr>
<tr>
<td>4-tert. Butylphenol</td>
<td></td>
</tr>
<tr>
<td>4-sec. Pentylphenol</td>
<td></td>
</tr>
<tr>
<td>4-i-Pentylphenol</td>
<td></td>
</tr>
<tr>
<td>4-tert-Pentylphenol</td>
<td>x</td>
</tr>
<tr>
<td>2-sec. Pentylphenol</td>
<td></td>
</tr>
<tr>
<td>4-Cyclohexylphenol</td>
<td>x</td>
</tr>
<tr>
<td>4-tert. Oktylphenol</td>
<td>x</td>
</tr>
<tr>
<td>4-Nonylphenol</td>
<td>x</td>
</tr>
<tr>
<td>4-Nonylphenoxyessigsäure</td>
<td>x</td>
</tr>
<tr>
<td>4-Nonylphenoldiethoxylat</td>
<td>x</td>
</tr>
<tr>
<td>Tergitol NP9 (4-Nonylphenol-nonaethoxylat)</td>
<td>x</td>
</tr>
<tr>
<td>4-(4-Hydroxyphenyl)-2,2,6,6-tetra-methylcyclohexancarbonsäure</td>
<td>x</td>
</tr>
<tr>
<td>4-Hydroxy-propiophonon</td>
<td>x</td>
</tr>
<tr>
<td>4-Hydroxy-n-butyrophonon</td>
<td>x</td>
</tr>
<tr>
<td>Butylhydroxyanisol</td>
<td>x</td>
</tr>
</tbody>
</table>

In vivo erfaßte Wirkungen:
1. Allen-Doisy Test: Verhornung des Vaginalepithels
2. Uterusgewichtstest: Erhöhung des Uterusgewichts
3. Uterusgewichtstest: Erhöhte Zellproliferation
4. Stimulierung der Vitellogeninsynthese bei Forellen

In vitro erfaßte Wirkungen:
1. Östrogenrezeptorbindung
2. MCF-7 Zellen: Stimulierung der Zellproliferation
3. MCF-7 Zellen: Induktion von Progesteronrezeptoren
II. Literaturübersicht, Seite 42

4. MCF-7 Zellen (genetisch verändert): Stimulierung der östrogenabhängigen Transkription
5. ZR-75-1 Zellen: Stimulierung der Proliferation
6. CEF Zellen (genetisch verändert): Stimulierung der östrogenabhängigen Transkription
7. Fischhepatozyten: Stimulierung der Vitellogeninsynthese
8. Genetisch veränderte Hefezellen: Stimulierung der östrogenabhängigen Transkription

6.1 Östrogenrezeptorbindung

6.2 In vitro Effekte an MCF-7 Zellen

Untersuchungen von SOTO et al. (1991) ergaben, daß ein Bestandteil von Polystyrol in Zentrifugenröhrchen dazu führte, östrogen sensiti
ve Brustkrebszellen (MCF-7-Zellen) zur Proliferation anzuregen (E-Screen Test). Die Autoren identifizierten die hierfür verantwortliche Verbindung als p-NP. Der E-Screen-Test wurde zum Nachweis einer östrogenen Wirkung zahlreicher Chemikalien angewandt (SOTO et al., 1992, 1994, 1995). Dabei wurden östroge
ne Effekte von Pestiziden, Phytoöstrogenen, polychlorierten Biphenylen, Alkylphenolen und Phytohormonen nachgewiesen. Für 4-NP lag die relative Wirkungsstärke im Vergleich zu Östradiol (100 %) bei 0,001%. Nach WHITE et al. (1994) erfolgte eine halbmaximale Stimu-
lation des MCF-7-Zellwachstums durch 17ß-Estradiol bei Konzentrationen von 10^{-10} bis 10^{-9} Mol, während Oktylphenol (OP) erst bei 10^{-6} Mol und NP bei 10^{-5} Mol einen meßbaren Effekt zeigten. Weitere Untersuchungen an MCF-7-Zellen ergaben in serum-freiem Medium eine relative Bindungsaffinität von 0,026% für NP und 0,072% für OP, in Serum hingegen von 0,0039% für NP und 0,0029% für OP gegenüber Östradiol (NAGEL et al., 1997). COLD-HAM et al. (1997) konnten in einem Methodenvergleich aufzeigen, daß ein rekombinanter Hefezell-Assay (RCBA) empfindlicher auf Östogene reagiert als MCF-7 Zellen. Die Mess-
sungen ergaben relative östrogene Aktivitäten von 9,6% für Östron, 74,3% für DES und 0,005% für NP. Im Rahmen von Untersuchungen von REN et al. (1997) an MCF-7 Zellen, wurde mittels quantitativer RT-PCR (reverse transcriptase-polymerase chain reaction) die Wirkung von Östradiol und NP auf die ps2-, MUCI- und ER-Genexpression ermittelt. Die mRNA-Expressionen zeigten für NP und Östradiol unterschiedliche Zeitverläufe, was nach Meinung der Autoren auf verschiedene Wirkungsmechanismen bezüglich der Hormonregula-
tion oder des Stoffwechsel hinweist. Der oben genannte E-Screen Test kann auch zur Erfas-
und Ablauf einer städtischen Kläranlage ergab Östradiol-äquivalente Konzentrationswerte
von 39,8 ng/l für den Zulauf und 4,5 ng/l für den Ablauf, was einer 89%-igen Elimination östrogener Komponente in der Kläranlage entsprach (KÖRNER et al., 1998c).

6.3 Stimulierung der Vitellogeninsynthese bei Fischen

terweise war nach oraler Applikation hoher Dosen von Methyltestosteron an Goldfische ebenfalls eine Stimulierung der VG-Synthese zu beobachten (HORI et al. 1979).

6.4 **Effekte auf den Hormonhaushalt**

Zum momentanen Zeitpunkt vorliegende Angaben zur möglichen Beeinflussung des Steroidhormonhaushaltes durch NP beschränken sich auf, an Invertebraten ermittelte Untersuchungsergebnisse. Nach BALDWIN et al. (1997) bewirkte ein 48-stündige Exposition weiblicher Wasserflöhe (Daphnia magna) in 25 und 100 µg NP/l eine konzentrationsabhängige Hem-
mung der Ausscheidung von Glukose-konjugiertem Testosteron. Auch der Ausscheidungs-
weg über Sulfat-konjugiertes Testosteron wurde bei beiden NP-Konzentrationen zu etwa 50
% gehemmt. Es handelt sich bei diesen 2 Reaktionen um Schritte der Phase-II-Reaktion im
Steroidhormonmetabolismus. In der Folge wurde ein signifikanter Anstieg von androgenem
Hormon beobachtet. Desweiteren führte NP zu einer Zunahme relativ unpolarer dehydroxy-
lierter bzw. reduzierter Testosteronmoleküle. Für die Phase-II-Reaktion der Androgenmetabo-
lisierung werden aber hydroxylierte Testosteronmoleküle benötigt. Nach BALDWIN et al.
(1997) führte die zunehmende Dehydroxylierung der androgenen Substanzen, zu einem Sub-
stratmangel und somit zu einer Unterdrückung der nachfolgenden Konjugierungsreaktionen.
Bei Daphnia magna verursachte NP somit eine metabolische Androgenisierung, welche in
einer verminderten Fruchtbarkeit zum Ausdruck kam. Ähnliche Befunde ergaben sich nach
Exposition von Daphnia magna in Nonylphenolpolyethylyenglykol (NPPG) (BALDWIN et al.,

6.5 Beeinflussung des Geschlechtsapparates und der Reproduktion von Fischen

Seit Jahrzehnten wird in der Aquakultur die Möglichkeit genutzt, das gonadale Geschlecht
von Fischen durch die Gabe natürlicher oder synthetischer Hormone zu manipulieren
(JOHNSTONE et al., 1978; PANDIAN & SHEELA, 1995). Unter humantoxikologischen und
ökotoxikologischen Gesichtspunkten stellt sich somit die Frage, inwieweit auch östrogen
wirksame Chemikalien in der Lage sind, die für die Reproduktion wichtigen Strukturen und
Funktionen zu beeinflussen (THIERFELDER et al., 1995; SCHÄFER & ZAHRADNIK,
1997). Bezüglich möglicher Auswirkungen von NP auf Fische liegen bereits einige Literatur-
gangaben vor. So wird das gehäufte Auftreten hermaphroditischer Fische in englischen Gewäs-
sern unterhalb von Kläranlagen mit der Anwesenheit von Alkylphenolen sowie natürlichen
und synthetischen Östrogenen in Verbindung gebracht (PURDOM et al., 1994; JOBLING et
al., 1997; JOBLING et al., 1998; TYLER & ROUTLEDGE, 1998). Nach Untersuchungen
von JOBLING et al. (1996) führte eine 3-wöchige Exposition männlicher Regenbogenforellen
in 30 µg NP/l zu einer signifikanten Abnahme des Gonadosomatischen Index (GSI) sowie zu
einer Hemmung der Spermatogenese. Die gleiche Menge an NP bewirkte bei juvenilen, weib-
lchen Regenbogenforellen eine signifikante Zunahme des Ovosomatischen Index (OSI), wo-
bei nach Exposition in 1 µg NP/l bereits eine deutliche Abnahme des Körpergewichts zu beob-
bachten war (ASHFIELD et al., 1998). Eine 3-monatige NP-Exposition der Aquarienfischart
III. Material und Methoden

1. Expositionsdesign

1.1 Expositionsbedingungen

Abbildung 1: Schematische Darstellung der Wasserversorgung bei toxikologischen Fischtests im Durchflußverfahren

1.2 Testwasser

Tabelle 11: Physikalische und chemische Durchschnittswerte des Wielenbacher Quellwassers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur</td>
<td>10,3° C</td>
</tr>
<tr>
<td>Elektrische Leitfähigkeit</td>
<td>730 µS/cm</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>7,4</td>
</tr>
<tr>
<td>Säurekapazität 4,3 (SBV)</td>
<td>6,5 mmol/l</td>
</tr>
<tr>
<td>Gesamthärte</td>
<td>21,2 dGH</td>
</tr>
<tr>
<td>Natrium</td>
<td>8,2 mg/l</td>
</tr>
<tr>
<td>Kalium</td>
<td>3,5 mg/l</td>
</tr>
<tr>
<td>Magnesium</td>
<td>27,2 mg/l</td>
</tr>
<tr>
<td>Kalzium</td>
<td>105,8 mg/l</td>
</tr>
<tr>
<td>Nitrat</td>
<td>29,1 mg/l</td>
</tr>
<tr>
<td>BSB₅</td>
<td>0,9 mg/l</td>
</tr>
<tr>
<td>CSB</td>
<td>6,5 mg/l</td>
</tr>
</tbody>
</table>
Tabelle 12: Übersicht über die Nonylphenol-Konzentrationen in den Testbecken (Nominal- und Realkonzentrationen)

<table>
<thead>
<tr>
<th>Versuchsansatz</th>
<th>Nominalkonzentration (µg/l)</th>
<th>Realkonzentration (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versuch A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,16 ± 0,25</td>
<td>10,46 ± 2,04</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versuch C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,17 ± 0,3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4,73 ± 0,98</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9,53 ± 1,33</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15,47 ± 1,87</td>
<td></td>
</tr>
<tr>
<td>Versuch D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abwasser</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Abwasser + Arkopal</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>E – Expositionsmodell II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13,6</td>
<td></td>
</tr>
<tr>
<td>E – Expositionsmodell III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15,2</td>
<td></td>
</tr>
<tr>
<td>E – Expositionsmodell IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,05 ± 0,39</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10,17 ± 1,33</td>
<td></td>
</tr>
<tr>
<td>Versuch H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10,5</td>
<td></td>
</tr>
</tbody>
</table>

1.3 Durchführung der Expositionen

Die Versuche A bis F wurden nach einem Verfahrensvorschlag der Ad hoc Arbeitsgruppe des Umweltbundesamtes zur Entwicklung ökotoxikologischer Testverfahren in aquatischen Systemen (RUDOLPH & BOJE, 1986) und in Anlehnung an die OECD-Richtlinie 204 durchgeführt.
Versuch A Nonylphenol-Exposition adulter Regenbogenforellen (Oncorhynchus mykiss) (Intervall-Exposition)

Für diesen Versuch standen institutseigene, 4-jährige Zuchttiere (Körperlänge: 53,12 ± 2,4 cm; Körpergewicht: 1667 ± 201,6 g) zur Verfügung. Die Tiere aller Versuchsgruppen wurden bis zum Expositionszeitraum und in den Intervallen zwischen den Expositionen in anlageeigenen, 30 m³ großen Betonteichen gehalten. Bis zum Versuchsbeginn und auch während der expositionsfreien Intervalle erfolgte die Fütterung der Tiere von Hand einmal täglich mit handelsüblichem, pelletiertem Laichfischfutter (Kronen-Fisch Laich 500 E 8 mm; Kottmann GmbH, Wesel, Deutschland). Die Futtermenge betrug 1,5 % des Fischgewichts. Der Gesundheitszustand der Tiere wurde vor Versuchsbeginn an Geschwistertieren stichprobenartig mittels parasitologischer, pathologisch-anatomischer und pathologisch-histologischer Untersuchungen beurteilt.

Der Versuchszeitraum erstreckte sich von Juli bis November 1996. Es erfolgte eine 4-malige Exposition mit Nonylphenol (Technisches NP: Sigma-Aldrich) von jeweils 10 Tagen pro Monat im Doppelansatz (24 Fische pro Gruppe, davon 16 männliche und 8 weibliche Tiere). Hierzu standen Rinnen mit einem Fassungsvermögen von 1,2 m³ zur Verfügung (Abbildung 2). Die nominalen NP-Konzentrationen betrugen 1 und 10 µg/l. Eine unbehandelte Forellen gruppe, welche unter ansonsten identischen Bedingungen gehalten wurde, diente als Kontrollgruppe.
Abbildung 2: Testanlage zur Exposition adulter Regenbogenforellen (Versuch A und B)
Versuch B Ethinylestradiol (EE2)-Behandlung adulter Regenbogenforellen

Versuch C Nonylphenol-Exposition bzw. EE2-Behandlung juveniler Karpfen (Cyprinus carpio)

Versuch D Abwasser-Exposition juveniler Karpfen (Cyprinus carpio)

Im Rahmen von Versuch D wurden zwei Gruppen juveniler Karpfen à 22 Tiere (Körpergewicht: 14,87 ± 3,98g; Körperlänge: 8,91 ± 0,89) für 35 Tage kommunalem Abwasser ausgesetzt. Die Fische wurden im Versuchsland Großlappen im Anschluß an zwei halbtechnische Versuchskläranlagen (SCHADE et al., 1997) in 90 l-Testaquarien unter Tageslichtbedingungen gehalten (Abbildung 4). Die Aquarien wurden mit einem Teilstrom des vorher mechanisch und biologisch geklärten Münchner Abwassers gespeist (Durchlauf: 6 m³/Tag). Die Wassertemperatur lag bei durchschnittlich 15 +/-1,5 °C und der Sauerstoffgehalt des Wassers bei 5 mg/l. Während Gruppe 1 ausschließlich dem nachgeklärten Abwasser ausgesetzt war, wurde Gruppe 2 in dem Abwasser unter Zusatz der NP-haltigen Industriechemikalie Arkopal N-150® (Hoechst AG) exponiert. Für die erste Gruppe ergab sich eine reale NP-Belastung von 1 µg/l, während die Arkopal-substituierte Gruppe 2 einer NP-Konzentration von 10 µg/l ausgesetzt war. Eine zusätzliche Positiv-Kontrollgruppe erhielt eine einmalige Injektion von EE2 (500 µg/kg Körpergewicht). Gänzlich unbehandelte Fische dienten als Kontrolltiere. Die Fütterung erfolgte analog Versuch C.
III Material und Methoden, Seite 57

Abbildung 4: Schematische Darstellung der halbtechnischen Versuchskläranlage auf dem Versuchsfield München - Großlappen mit angeschlossenen Testaquarien

Versuch E Nonylphenol-Exposition bzw. Ethinylestradiol (EE2)-Behandlung unterschiedlicher Entwicklungsstadien und Altersgruppen von Regenbogenforellen

hinaus wurde ein Langzeitversuch durchgeführt (Expositionsmodel IV), bei dem Regenbo-
genforellen ab dem Ei-Stadium über unterschiedliche Zeiträume (2, 6 und 12 Monate) NP-
Konzentrationen von 1 und 10 µg/l ausgesetzt bzw. mit EE2 (500 µg/kg KG) behandelt wur-
den (Tabelle 14).

Tabelle 13: Expositionsmodelle zur Erfassung potentieller Effekte von Nonylphenol (NP) und
Ethinylestradiol (EE2) auf die Gonadendifferenzierung und Geschlechterverteilung bei juve-
nilen Regenbogenforellen.

Expositionsmodel I: Exposition der Elterntiere. Expositionsmodel II: Exposition der Elterntie-
re und der F1-Generation. Expositionsmodel III: Exposition der F1-Generation

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Exposition der Eltern-</th>
<th>Exposition der F1-Generation</th>
<th>Zeitpunkt der Exposition</th>
<th>Alter zum Untersuchungszeitpunkt</th>
<th>Gesamtzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle¹</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4-9 Mon.</td>
<td>104</td>
</tr>
<tr>
<td>Kontrolle¹</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18 Mon.</td>
<td>100</td>
</tr>
<tr>
<td>EE2² (500 µg/kg KG)</td>
<td></td>
<td>4 x</td>
<td>Laichzeit</td>
<td>6 Mon.</td>
<td>100</td>
</tr>
<tr>
<td>10 µg NP/l¹</td>
<td>40 d</td>
<td>-</td>
<td>Laichzeit</td>
<td>6 Mon.</td>
<td>117</td>
</tr>
<tr>
<td>10 µg NP/l¹</td>
<td>40 d</td>
<td>-</td>
<td>Laichzeit</td>
<td>18 Mon.</td>
<td>100</td>
</tr>
<tr>
<td>10 µg NP/l¹</td>
<td>40 d</td>
<td>-</td>
<td>Laichzeit</td>
<td>16 Mon.</td>
<td>217</td>
</tr>
<tr>
<td>1 µg NP/l¹</td>
<td>40 d</td>
<td>-</td>
<td>Laichzeit</td>
<td>6 Mon.</td>
<td>27</td>
</tr>
<tr>
<td>Expositionsmodel II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 µg NP/l¹</td>
<td>40 d</td>
<td>7 d</td>
<td>Laichzeit</td>
<td>6 Mon.</td>
<td>54</td>
</tr>
<tr>
<td>1 µg NP/l¹</td>
<td>40 d</td>
<td>7 d</td>
<td>Laichzeit</td>
<td>6 Mon.</td>
<td>30</td>
</tr>
<tr>
<td>Expositionsmodel III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE2 (400 µg EE2/l)</td>
<td>-</td>
<td>1 d</td>
<td>Schlupf</td>
<td>5 Mon.</td>
<td>80</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>-</td>
<td>7 d</td>
<td>Schlupf</td>
<td>6-9 Mon.</td>
<td>93</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>-</td>
<td>7 d</td>
<td>Schlupf</td>
<td>6 Mon.</td>
<td>30</td>
</tr>
</tbody>
</table>
1 Exposition 4-sömmeriger Laichfische 1996 2 Behandlung 4-sömmeriger Laichfische 1997; bei den mit * gekennzeichneten Tiergruppen wurde neben der Geschlechterverteilung auch die Gonadenreifung der exponierten Individuen gegenüber gleichaltrigen Kontrolltieren beurteilt;

aufgrund makroskopischer Beurteilung als männlich eingestufte Individuen

Tabelle 14: Expositionsmodelle zur Erfassung potentieller Effekte von Nonylphenol (NP) und Ethinylestradiol (EE2) auf die Gonadendifferenzierung und Geschlechterverteilung bei juvenilen Regenbogenforellen. Expositionsmodel IV: Langzeit-Exposition ab dem Ei-Stadium

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Exposition der Eltern - tier</th>
<th>Exposition der F1 - Generation</th>
<th>Zeitpunkt der Exposition</th>
<th>Alter zum Untersuchungszeitpunkt</th>
<th>Gesamtzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6 Mon.</td>
<td>14</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12 Mon.</td>
<td>36</td>
</tr>
<tr>
<td>Kontrolle</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2-8 Mon.</td>
<td>366</td>
</tr>
<tr>
<td>DMSO (0,002 ‰)</td>
<td>-</td>
<td>2 Mon.</td>
<td>ab Ei-Stadium</td>
<td>12 Mon.</td>
<td>20</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>-</td>
<td>2 Mon.</td>
<td>ab Ei-Stadium</td>
<td>6 Mon.</td>
<td>145</td>
</tr>
<tr>
<td>DMSO (0,002 ‰)</td>
<td>-</td>
<td>6 Mon.</td>
<td>ab Ei-Stadium</td>
<td>6 Mon.</td>
<td>14</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>-</td>
<td>6 Mon.</td>
<td>ab Ei-Stadium</td>
<td>6 Mon.</td>
<td>13</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>-</td>
<td>6 Mon.</td>
<td>ab Ei-Stadium</td>
<td>6 Mon.</td>
<td>14</td>
</tr>
<tr>
<td>DMSO (0,002 ‰)</td>
<td>-</td>
<td>12 Mon.</td>
<td>ab Ei-Stadium</td>
<td>12 Mon.</td>
<td>36</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG, i.m.)</td>
<td>6 x</td>
<td>7. Lebensmonat</td>
<td>ab Ei-Stadium</td>
<td>6 Mon.</td>
<td>55</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>-</td>
<td>12 Mon.</td>
<td>ab Ei-Stadium</td>
<td>12 Mon.</td>
<td>40</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>-</td>
<td>12 Mon.</td>
<td>ab Ei-Stadium</td>
<td>12 Mon.</td>
<td>36</td>
</tr>
</tbody>
</table>
Bei den mit \(\text{9} \) gekennzeichneten Tiergruppen wurde neben der Geschlechterverteilung auch die Gonadenreifung der exponierten Individuen gegenüber gleichaltrigen Kontrolltieren beurteilt sowie eine Bestimmung des Vitellogenin-Gehaltes im Blut vorgenommen.

Versuch F Life-cycle Test mit Medakas (Oryzias latipes): Nonylphenol- bzw. Ethinylestradiol (EE2)-Exposition

Dieser Versuch wurde am Zoologischen Institut I der Universität Heidelberg durchgeführt. Details zur Versuchsanordnung sind dem Teilbericht II zu entnehmen.

Versuch G Nonylphenol-Exposition von Eiern des Zebrabuntbarsches (Cichlasoma nigrofasciatum): Chromosomenaberrationsanalyse (CA-Analyse)

Abbildung 5: Zebrabuntbarsch (Cichlasoma nigrofasciatum) (Versuch G)

Abbildung 6: Inkubationsanlage für Fischeier (Versuch G)
Versuch H: Nonylphenol-Exposition von adulten Hundsfischen (Umbra pygmaea): Schwesterchromatid-Austausch-Test (SCE-Test)

Als Testtiere für den im Rahmen von Versuch H durchgeführten SCE-Test dienten Amerikanische Hundsfische (Umbra pygmaea) aus institutseigenen Teichen (Abbildung 7). Die vier Gruppen à 5 Tiere wurden bereits einige Tage vor der Schadstoffexposition zur Anpassung an die Hälterungsbedingungen in die Versuchsaquarien (20 l) eingesetzt. Je eine Gruppe wurde über einen Zeitraum von 8 Tagen NP-Konzentrationen von 1 und 10 µg/l ausgesetzt. Im Gegensatz zu den vorher beschriebenen Versuchen wurde diese Exposition nicht im Durchflussverfahren, sondern semistatisch durchgeführt. Eine weitere Gruppe wurde ausschließlich dem verwendeten Lösungsmittel DMSO ausgesetzt. Die vierte Fischgruppe wurde nicht behandelt und diente somit als Kontrollgruppe. Zur späteren Darstellung von Schwesterchromatiden wurde allen Fischen während des Versuchszeitraums je 2x das Basenanalogon 5-Bromo-2'-deoxyuridin (BrdU) intramuskulär injiziert (0,5 mg/g Körpergewicht; Tag 1 und Tag 4).
Versuch I Behandlung juveniler Karpfen mit radioaktiv markiertem Nonylphenol: Pharmakokinetik-Studie

2. Untersuchungsparameter

Tabelle 15 gibt einen Überblick über die, im Rahmen der einzelnen Versuchsansätze durchgeführten Untersuchungen
Tabelle 15: Versuchsansätze (Versuch A bis I) unter Zuordnung der jeweils durchgeführten Untersuchungen

<table>
<thead>
<tr>
<th>Untersuchungen</th>
<th>Versuch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Toxikologische Untersuchungen:</td>
<td></td>
</tr>
<tr>
<td>1. Verhaltensstudien</td>
<td>x</td>
</tr>
<tr>
<td>2. hämatologie</td>
<td>x</td>
</tr>
<tr>
<td>3. klinische Chemie</td>
<td>x</td>
</tr>
<tr>
<td>4. Histopathologie der Organe</td>
<td>x</td>
</tr>
<tr>
<td>5. Elektronenmikroskopie</td>
<td>x</td>
</tr>
<tr>
<td>6. Rückstandsanalytik</td>
<td>x</td>
</tr>
<tr>
<td>7. Pharmakokinetik</td>
<td>x</td>
</tr>
<tr>
<td>8. Genotoxikologische Untersuchungen</td>
<td>x</td>
</tr>
</tbody>
</table>

Endokrinologische und reproduktionstoxische Untersuchungen:

1. Reproduktionsstudie	x	x		x	
2. Makroskopische Untersuchung	x	x	x	x	
der Embryonal- und Larvalentwicklung					
3. Histologische Untersuchung	x	x			
der Geschlechtsdifferenzierung und Gonadenentwicklung					
4. Quantitativ-stereologische Untersuchungen zum Funktionszustand der Hypophyse	x	x	x	x	
5. Analyse von Vitellogein im Blutplasma	x	x	x	x	x
6. Immunhistochemische Lokalisation von Vitellogein	x	x			

Fortsetzung der Legende zu Tabelle 15:

Versuche:
A Nonylphenol-Exposition adulter Regenbogenforellen (Oncorhynchus mykiss) (Intervall-Exposition)
B Ethinylestradiol-Behandlung adulter Regenbogenforellen
C Nonylphenol-Exposition bzw. Ethinylestradiol-Behandlung juveniler Karpfen (Cyprinus carpio)
D Abwasser-Exposition juveniler Karpfen
E Nonylphenol-Exposition bzw. Ethinylestradiol-Behandlung unterschiedlicher Entwicklungsstadien und Altersgruppen von Regenbogenforellen
F Life-cycle Test mit Medakas: Nonylphenol- und 17ß-Östradiol-Exposition
G Nonylphenol-Exposition von Eiern des Zebrabantbarsches (Cichlasoma nigrofasciatum): Chromosomenaberrations-Analyse (CA)
H Nonylphenol-Exposition von adulten Hundsfischen (Umbra pygmaea): Schwesterchromatid-Austausch-Test (SCE-Test)
i Behandlung juveniler Karpfen mit radioaktiv markiertem Nonylphenol: Pharmakokinetik-Studie

2.1 Toxikologische Untersuchungen

2.1.1 Verhaltensstudien an juvenilen Karpfen (Versuch C)

In Abbildung 8 ist der Aufbau von BehavioQuant® dargestellt. Vor jedem der zu untersuchenden Testbecken befindet sich eine Videokamera. Diese Videokameras sind über einen Multiplexer mit einer bildverarbeitenden Baugruppe verbunden, welche in einem Personalcomputer...

Abbildung 8: BehavioQuant® - Anlage zur Verhaltensmessung im Rahmen toxikologischer Fischtests
2.1.2 Hämatologische Untersuchungen (Versuch A bis D)

Im Rahmen der Versuche A bis D wurden im Anschluß an die Expositionen jeweils 10 Tiere (Versuch A, B) bzw. 12 Tiere (Versuch C, D) pro Gruppe einer hämatologischen Untersuchung unterzogen.

- Das mittlere Erythrozytenvolumen, MCV (mean corpuscular volume)
- Der mittlere Hämoglobingehalt der Einzelerythrozyten, MCH (mean corpuscular hemoglobin)
- Die mittlere Hämoglobinkonzentration der Erythrozyten, MCHC (mean corpuscular hemoglobin concentration)

Die statistische Auswertung der hämatologischen Daten erfolgte mit Hilfe der SPSS Software. Zunächst wurde eine explorative Datenanalyse durchgeführt. Im Fall einer Homogenität der Varianzen wurde zur Überprüfung möglicher Unterschiede zwischen den Gruppen die ANOVA Varianzanalyse, gefolgt vom Dunnett t-test, herangezogen. Im Falle einer Inhomogenität hingegen wurden der nichtparametrische Kruskal-Wallis Test sowie der Mann-Whitney U-test durchgeführt.
2.1.3 Klinische Chemie (Versuch A und B)

Klinisch-chemische Parameter konnten aufgrund der erforderlichen hohen Blutmenge nur bei adulten Regenbogenforellen der Versuche A und B durchgeführt werden. Hierzu wurden etwa 1,5 ml Blut in 2 ml-Eppendorfgefäße überführt und bei 1610 g und 3 °C für 12 Minuten zentrifugiert (Zentrifuge: Sigma-3 MK). Das überstehende Plasma wurde abpipettiert und zur Aktivitätsmessung der Enzyme Alkalische Phosphatase (AP), Glutamat-oxalacetat Transaminase (GOT) sowie der Glutamat-Pyruvat-Transaminase (GPT) verwendet. Zudem wurden die Gehalte an Glucose und Kalzium im Plasma bestimmt. Alle genannten Parameter wurden im Naßchemieverfahren (Dr. Lange Küvetten-photometer) photometrisch (Photometer: Dr. Lange, CADAS 100) analysiert.

Die statistische Auswertung der Ergebnisse erfolgte wie unter 2.1.2. beschrieben.

2.1.4 Histopathologie der Organe (Versuch A bis D)

2.1.5 Elektronenmikroskopie (Versuch A bis D)

Die elektronenmikroskopischen Untersuchungen wurden am Zoologischen Institut I der Universität Heidelberg durchgeführt. Details hierzu finden sich im Teilbericht II.

2.1.6 Rückstandsanalytik (Versuch A bis C)

Studien zur Pharmakokinetik (Versuch I)

Für diese Untersuchungen standen die Einrichtungen des Max-Planck-Instituts für Verhaltensphysiologie in Seewiesen (Prof. Dr. Manfred Gahr) zur Verfügung. Die exakte Beschreibung des Versuches ist der beiliegenden Dissertation “Untersuchungen zur neuroendokrinen Wirkung von Nonylphenol bei Fischen” (NARDY, 1999) zu entnehmen.

2.1.8 Genotoxikologische Untersuchungen (Versuch G und H)
Versuch G: Chromosomenaberrations-Analyse an Fischeiern

Versuch H: Schwesterchromatid-Austausch-Test (SCE-Test) an adulten Fischen

Mit Hilfe des SCE (sister chromatid exchange)-Tests können, durch eine unterschiedliche Anfärbung der Schwesterchromatiden eines Chromosoms, Chromosomenschäden auf subchromatidaler Ebene sichtbar gemacht werden. Durch einen partiellen Einbau des Basenanalogons 5-Bromo-2’-deoxyuridin (BrdU) anstelle von Thymidin in replizierende Chromatiden läßt sich ein Austausch kleiner Chromatidsegmente während der Zellteilung farblich darstellen (SCHWAIGER et al., 1993; NEGELE et al., 1995; SCHWAIGER et al., 1998). Das Basenanalogon BrdU wurde den Fischen 2x während des 8-tägigen Versuchszeitraums intra- muskulär (i.m.) appliziert. Drei Stunden vor Versuchsende erhielten die Fische Colchicin zur Blockierung der Mitose in der Metaphase (0,05 mg/g KG, i.m). Anschließend wurden die Tiere betäubt, mittels Rückenmarkdurchtrennung getötet und das Nieren- und Milzgewebe zur Chromosomenpräparation entnommen. Die Chromosomenpräparation erfolgte zunächst wie unter 2.1.8.1 beschrieben. Anschließend wurde eine Differentialfärbung der Schwesterchromatiden vorgenommen. Hierzu wurden die luftgetrockneten Präparate zunächst für 10 Minuten der Färbesubstanz Hoechst 33258 ausgesetzt, anschließend mit 2 x SSC-Puffer (saline sodium citrate, pH 7,0) überschichtet und für eine Stunde UV bestrahlt (360 nm). Nach
einer weiteren, 1-stündigen Inkubation bei 60 °C (ebenfalls in 2 x SSC) wurden die Präparate für 10 Minuten mit Giemsa (5 %, in Soerensen-Puffer, pH 6,8) gegengefärbt. Die Auswertung erfolgte lichtmikroskopisch wie unter 2.1.8.1. beschrieben. Die statistische Auswertung der Ergebnisse wurde wie unter 2.1.2 beschrieben, durchgeführt.

2.2 Endokrinologische und reproduktionstoxische Untersuchungen

2.2.1 Beurteilung des Reproduktionserfolgs (Versuch A, B und F)

Versuch A und B: Beurteilung des Reproduktionserfolgs bei Regenbogenforellen

Versuch F: Beurteilung des Reproduktionserfolgs bei Medakas

Untersuchungen zum Reproduktionserfolg bei Medakas wurden im Rahmen eines kompletten Life-Cycle Tests am Zoologischen Institut I der Universität Heidelberg durchgeführt. Angaben zur Versuchsanordnung und den Untersuchungsparametern sind dem Teilbericht II zu entnehmen.

2.2.2 Untersuchungen zur Larval-Entwicklung (Versuch A, B und F)

Versuch A und B: Untersuchungen zur Larval-Entwicklung bei Regenbogenforellenbrut

Versuch F: Untersuchungen zur Embryo-Larval-Entwicklung bei Medakas

Untersuchungen zur Embryo-Larval-Entwicklung wurden im Rahmen, des am Institut I der Universität Heidelberg durchgeführten Life-Cycle Tests durchgeführt und werden in Teilbericht II beschrieben.
2.2.3 Untersuchungen zur Geschlechtsdifferenzierung und Gonadenentwicklung (Versuch E und F)

Versuch E: Histologische Untersuchungen zur Geschlechtsdifferenzierung und Gonadenentwicklung bei Regenbogenforellen (Versuch E)

Die statistische Analyse von Veränderungen bezüglich des Geschlechterverhältnisses erfolgte mittels des Chi-Quadrat Tests.

Versuch F: Histologische Untersuchungen zur Geschlechtsdifferenzierung und Gonadenentwicklung bei Medakas

Im Rahmen des, am Zoologischen Institut der Universität Heidelberg durchgeführten Life-Cycle Tests (siehe Teilbericht II) wurden adulte Individuen der F1-Generation für weiterführende histologische Untersuchungen des Gonadengewebes asserviert. Die histotechnische Aufbereitung erfolgte in der unter 2.1.4. beschriebenen Weise. Aufgrund der geringen Größe der Fische wurden die Gonaden allerdings nicht entnommen, sondern Longitudinalschnitte der kompletten Fische angefertigt. Um dabei sicher auf Gonadengewebe zu treffen, war es zudem erforderlich, Serienschnitte herzustellen. Tabelle 16 gibt einen Überblick über die An-
zahl der Fische, die histologisch untersucht wurden. Die statistische Auswertung möglicher
Veränderungen des Geschlechterverhältnisses erfolgte wiederum mittels des Chi-Quadrat
Tests.

Tabelle 16: Kollektiv von adulten Nonylphenol- bzw. 17ß-Östradiol-exponierten Medakas zur
histologischen Untersuchung

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Tierzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>70</td>
</tr>
<tr>
<td>DMSO (0,02%)</td>
<td>30</td>
</tr>
<tr>
<td>17ß-Östradiol (100 ng/l)</td>
<td>36</td>
</tr>
<tr>
<td>2 µg NP/l</td>
<td>17</td>
</tr>
<tr>
<td>20 µg NP/l</td>
<td>33</td>
</tr>
<tr>
<td>50 µg NP/l</td>
<td>24</td>
</tr>
</tbody>
</table>

2.2.4 Quantitativ-stereologische Untersuchungen zum Funktionszustand der Hypophyse
(Versuch A, B und E)

Eine genaue Beschreibung der Versuchsdurchführung sind den beigefügten Dissertationen
“Untersuchungen zur neuroendokrinen Wirkung von Nonylphenol bei Fischen“ (NARDY,
1999) und “Untersuchungen zur neuroendokrinen Wirkung von Nonylphenol bei juvenilen
Regenbogenforellen“ (von der HEYDE, 2000) zu entnehmen.

2.2.5 Bestimmung von 17ß-Östradiol (Versuch A und B)

Eine Bestimmung der 17ß-Östradiolkonzentrationen im Blutplasma erfolgte bei adulten Re-
genbogenforellen der Versuchsgruppen A und B. Die Analyse wurde mittels eines Testkits
(Technicon Immuno-1 System) der Firma Bayer Diagnostics durchgeführt. Die genaue Be-
schreibung der Methode ist der beiliegenden Dissertation “Untersuchungen zur neuroendokri-
2.2.6 Bestimmung von Vitellogenin im Blutplasma (Versuch A bis E)

Im Blutplasma der Regenbogenforellen und Karpfen der Versuche A bis E erfolgte eine Bestimmung des Vitellogeningehaltes. Die Messungen wurden bei Regenbogenforellen mittels eines Enzymimmunassays (kompetitiver ELISA), bei Karpfen anhand von Westernblots am Zoologischen Institut I der Universität Heidelberg durchgeführt. Eine detaillierte Beschreibung der Methodik ist dem Teilbericht II zu entnehmen.

2.2.7 Immunhistochemische Darstellung von Vitellogenin in der Leber (Versuch A und B)

Alkoholreihe bis zum Xylol und das anschließende Eindeckeln in Eukitt. Die Spezifität der Antikörper-Reaktion wurde anhand einer Negativ-Kontrolle überprüft.
IV. Ergebnisse

1. Allgemeine Untersuchungen

Abbildung 9: Korpulenzfaktoren bei juvenilen Karpfen nach 70-tägiger Exposition in Nonylphenol bzw. EE2-Behandlung (Versuch C); **p< 0,01
2. Spezielle Untersuchungsergebnisse

2.1 Toxikologische Untersuchungen

2.1.1 Verhaltensstudien an juvenilen Karpfen (Versuch C)

22.00) war die Schwimmgeschwindigkeit noch deutlicher reduziert. Kontrolltiere ließen keine tageszeitabhängigen Veränderungen ihres Schwimmverhaltens beobachten.

Abbildung 11: Mittlere Schwimmgeschwindigkeit bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung zu unterschiedlichen Tageszeiten (8.00–12.00, 16.00-19.00, 19.00–22.00) in der 10. Versuchswoche; *p<0,001

2.1.2 Hämatologische Untersuchungen (Versuch A bis D)

Versuch A: Intervall-Exposition adulter Regenbogenforellen in Nonylphenol (NP)

Hämoglobin, Hämatokrit, Gesamtzahl der Erythrozyten

Tabelle 17: Hämoglobin, Hämatokrit und Gesamtzahl der Erythrozyten bei adulten Regenbogenforellen nach NP-Exposition (Mittelwerte ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Hämoglobin (g/dl)</th>
<th>Hämatokrit (%)</th>
<th>Erythrozyten (10^6/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>10,70 ± 2,35</td>
<td>57,79 ± 9,09</td>
<td>1,23 ± 0,17</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>10,68 ± 1,17</td>
<td>61,54 ± 6,24</td>
<td>1,21 ± 0,25</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>9,82 ± 1,20</td>
<td>57,42 ± 7,38</td>
<td>1,04 ± 0,21</td>
</tr>
</tbody>
</table>

Abbildung 12: Hämoglobingehalt bei adulten Regenbogenforellen nach NP-Exposition (Mittelwert ± SD; n = 12)

Abbildung 13: Hämatokrit-Werte bei adulten Regenbogenforellen nach NP-Exposition (Mittelwert ± SD; n = 12)
Erythrozytenindices

Die Berechnung der Erythrozytenindices MCHC (mittlere Hämoglobin-Konzentration der Erythrozyten), MCH (mittlerer Hämoglobingehalt der Einzelerythrozyten) sowie MCV (mittleres Erythrozytenvolumen) ergab bei NP-exponierten Individuen keine signifikanten Abweichungen gegenüber den Kontrolltieren. In Tabelle 18 sind die Mittelwerte und Standardabweichungen für die einzelnen Indices dargestellt.

Tabelle 18: Erythrozytenindices bei adulten Regenbogenforellen nach NP-Exposition
(Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>MCHC (g Hb/dl Ery)</th>
<th>MCH (in pg)</th>
<th>MCV (in µm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>182,95 ± 18,28</td>
<td>881,61 ± 210,74</td>
<td>478,68 ± 92,44</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>173,86 ± 13,00</td>
<td>917,38 ± 188,19</td>
<td>525,87 ± 89,98</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>172,86 ± 24,12</td>
<td>980,74 ± 194,62</td>
<td>576,42 ± 132,29</td>
</tr>
</tbody>
</table>
Rotes Differentialblubild

Die Auswertung des roten Differentialblutbildes ergab bei Tieren, die den beiden Testkonzentrationen 1 und 10 µg NP/l ausgesetzt waren, eine signifikante Zunahme des prozentualen Anteils der Retikulozyten sowie eine Abnahme reifer Erythrozyten im Vergleich zu Kontrolltieren. Die Untersuchungsergebnisse sind in Tabelle 19 und in Abbildung 15 dargestellt.

Tabelle 19: Prozentualer Anteil von Erythrozyten und Retikulozyten bei adulten Regenbogenforellen nach NP-Exposition (Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Erythrozyten (%)</th>
<th>Retikulozyten (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>99,25 ± 0,60</td>
<td>0,75 ± 0,60</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>98,42±0,76</td>
<td>1,58±0,76</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>98,42±0,64</td>
<td>1,58±0,64</td>
</tr>
</tbody>
</table>

* p< 0,05

Abbildung 15: Prozentualer Anteil von Erythrozyten und Retikulozyten bei adulten Regenbogenforellen nach NP-Exposition (Mittelwert ± SD; n = 12); *p < 0,05
Gesamtzahl der Leukozyten

Tabelle 20: Gesamtzahl der Leukozyten bei adulten Regenbogenforellen nach NP-Exposition (Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Gesamtzahl der Leukozyten (10⁶/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>11,63 ± 3,53</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>17,13 ± 4,57</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>18,25 ± 7,32</td>
</tr>
</tbody>
</table>

Abbildung 16: Gesamtzahl der Leukozyten bei adulten Regenbogenforellen nach NP-Exposition (Mittelwert ± SD; n = 12)
Weiβes Differentialblutbild

Tabelle 21: Weiβes Differentialblutbild bei adulten Regenbogenforellen nach NP-Exposition (Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Lymphozyten (%)</th>
<th>Heterophile (%)</th>
<th>Granulozyten (%)</th>
<th>Monozyten (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>69,10 ± 3,6</td>
<td>29,90 ± 3,8</td>
<td>0,00 ± 0,00</td>
<td></td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>68,25 ± 6,7</td>
<td>31,75 ± 6,6</td>
<td>0,00 ± 0,00</td>
<td></td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>70,34 ± 8,6</td>
<td>29,66 ± 8,7</td>
<td>0,00 ± 0,00</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 17: Weiβes Differentialblutbild bei adulten Regenbogenforellen nach NP-Exposition (Mittelwert ± SD; n = 12)
Versuch B: Behandlung adulter Regenbogenforellen mit Ethinylestradiol (EE2)

Hämoglobin, Hämatokrit, Gesamtzahl der Erythrozyten

Tabelle 22: Hämoglobingehalt, Hämatokrit und Gesamtzahl der Erythrozyten bei adulter Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Hämoglobin (g/dl)</th>
<th>Hämatokrit (%)</th>
<th>Erythrozyten (10^6/\mu l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>10,94 ± 1,46</td>
<td>60,42 ± 8,00</td>
<td>1,20 ± 0,21</td>
</tr>
<tr>
<td>EE2 (500 µg/kg)</td>
<td>9,21*±2,16</td>
<td>53,17* ± 8,02</td>
<td>0,86**± 0,17</td>
</tr>
</tbody>
</table>

*\(p < 0,05\), **\(p<0,001\)

Abbildung 18: Hämoglobingehalt bei adulter Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12); *\(p < 0,05\)
Abbildung 19: Hämokrit-Werte bei adulten Regenbogenforellen nach EE2-Behandlung
(Mittelwert ± SD; n = 12); *p < 0,05

Abbildung 20: Gesamtzahl der Erythrozyten bei adulten Regenbogenforellen nach EE2-
Behandlung (Mittelwert ± SD; n = 12); **p < 0,01
Erythrozytenindices

Tabelle 23: Erythrozytenindices bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>MCHC (g Hb/dl Ery)</th>
<th>MCH (pg)</th>
<th>MCV (µm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>188,07 ± 29,45</td>
<td>968,76 ± 180,77</td>
<td>519,57 ± 88,41</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>180,49 ± 14,47</td>
<td>1145,40 ± 194,08</td>
<td>637,90* ± 114,44</td>
</tr>
</tbody>
</table>

* p < 0,05

Rotes Differentialblutbild

Tabelle 24: Prozentualer Anteil von Erythrozyten und Retikulozyten bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Erythrozyten (%)</th>
<th>Retikulozyten (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>98,42 ± 0,49</td>
<td>1,58 ± 0,49</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>96,83** ± 1,46</td>
<td>3,17** ± 1,46</td>
</tr>
</tbody>
</table>

**p < 0,01
Abbildung 21: Prozentualer Anteil von Erythrozyten und Retikulozyten bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12); *p < 0,05

Gesamtzahl der Leukozyten

Die Leukozytenzählungen ergaben bei Fischen, die zuvor mit Ethinylestradiol behandelt worden waren, keine, von den Kontrolltieren abweichenden Werte. In Tabelle 25 und Abbildung 22 sind die entsprechenden Mittelwerte und Standardabweichungen für die beiden Gruppen gegenübergestellt.

Tabelle 25: Gesamtzahl der Leukozyten bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Gesamtzahl der Leukozyten (10³/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>10,09 ± 4,97</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>9,54 ± 3,61</td>
</tr>
</tbody>
</table>
Abbildung 22: Gesamtzahl der Leukozyten bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12)

Weißes Differentialblutbild

Tabelle 26: Weißes Differentialblutbild bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Lymphozyten (%)</th>
<th>Heterophile Granulozyten (%)</th>
<th>Monozyten (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>87,91 ± 4,6</td>
<td>12,09 ± 4,6</td>
<td>0,00 ± 0,00</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>80,66** ± 7,4</td>
<td>19,34** ± 7,4</td>
<td>0,00 ± 0,00</td>
</tr>
</tbody>
</table>

**p < 0,01
Versuch C: Langzeitexposition juveniler Karpfen in Nonylphenol (NP) bzw. Langzeitbehandlung mit Ethinylestradiol (EE2)

Hämoglobin, Hämatokrit, Gesamtzahl der Erythrozyten

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Hämoglobin (g/dl)</th>
<th>Hämatokrit (%)</th>
<th>Erythrozyten (10^6/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>7,21 ± 0,80</td>
<td>34,65 ± 2,69</td>
<td>1,29 ± 0,12</td>
</tr>
<tr>
<td>Ethanol-Kontrolle</td>
<td>7,41 ± 0,93</td>
<td>33,75 ± 2,50</td>
<td>1,29 ± 0,13</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>6,03**± 0,36</td>
<td>32,45 ± 2,72</td>
<td>1,07**± 0,12</td>
</tr>
<tr>
<td>1 µg/l</td>
<td>7,41 ± 0,91</td>
<td>36,15 ± 3,74</td>
<td>1,20 ± 0,25</td>
</tr>
<tr>
<td>5 µg/l</td>
<td>7,82 ± 0,65</td>
<td>37,55 ± 2,65</td>
<td>1,33 ± 0,16</td>
</tr>
<tr>
<td>10 µg/l</td>
<td>6,65 ± 0,63</td>
<td>32,50 ± 2,01</td>
<td>1,13**± 0,08</td>
</tr>
<tr>
<td>15 µg/l</td>
<td>6,88 ± 1,33</td>
<td>31,60 ± 3,55</td>
<td>0,85***± 0,16</td>
</tr>
</tbody>
</table>

p < 0,01; *p < 0,001

Abbildung 24: Hämoglobingehalt bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung (Mittelwerte ± SD; n = 10); **p < 0,01
Abbildung 25: Hämatokrit-Werte bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung (Mittelwerte ± SD; n = 10)

Abbildung 26: Gesamtzahl der Erythrozyten bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung (Mittelwerte ± SD; n = 10); ** p < 0,01; *** p < 0,001
Erythrozytenindices

Tabelle 28: Erythrozytenindices bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung (Mittelwerte ± SD; n = 10)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>MCHC in g Hb/dl Ery</th>
<th>MCH in pg</th>
<th>MCV in µm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>20,83 ± 1,90</td>
<td>56,52 ± 9,17</td>
<td>272,43 ± 43,40</td>
</tr>
<tr>
<td>Ethanol-Kontrolle</td>
<td>21,90 ± 1,54</td>
<td>57,78 ± 6,96</td>
<td>264,06 ± 27,32</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>18,66* ± 1,29</td>
<td>56,52 ± 4,97</td>
<td>304,29 ± 24,55</td>
</tr>
<tr>
<td>1 µg/l</td>
<td>20,48 ± 0,98</td>
<td>63,33 ± 10,39</td>
<td>309,47 ± 49,08</td>
</tr>
<tr>
<td>5 µg/l</td>
<td>20,81 ± 0,66</td>
<td>59,43 ± 5,05</td>
<td>285,86 ± 25,81</td>
</tr>
<tr>
<td>10 µg/l</td>
<td>20,43 ± 0,81</td>
<td>59,37 ± 8,17</td>
<td>290,07 ± 32,73</td>
</tr>
<tr>
<td>15 µg/l</td>
<td>21,65± 2,37</td>
<td>82,68*** ± 14,09</td>
<td>382,64***± 57,25</td>
</tr>
</tbody>
</table>

*p< 0,05; ***p< 0,001

Rotes Differentialblutbild

Tabelle 29: Prozentualer Anteil von Erythrozyten und Retikulozyten bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung (Mittelwerte ± SD; n = 10)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Reife Erythrozyten (%)</th>
<th>Retikulozyten (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>98,00 ± 1,26</td>
<td>2,00 ± 1,26</td>
</tr>
<tr>
<td>Ethanol-Kontrolle</td>
<td>98,40 ± 0,80</td>
<td>1,60 ± 0,80</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>85,30*** ± 4,92</td>
<td>14,70*** ± 4,92</td>
</tr>
<tr>
<td>1 µg/l</td>
<td>98,60 ± 0,80</td>
<td>1,40 ± 0,80</td>
</tr>
<tr>
<td>5 µg/l</td>
<td>98,40 ± 0,92</td>
<td>1,60 ± 0,92</td>
</tr>
<tr>
<td>10 µg/l</td>
<td>96,90* ± 1,14</td>
<td>3,10* ± 1,14</td>
</tr>
<tr>
<td>15 µg/l</td>
<td>94,10*** ± 1,30</td>
<td>5,90*** ± 1,30</td>
</tr>
</tbody>
</table>

* p < 0,05; ***p < 0,001

Abbildung 27: Prozentualer Anteil von Erythrozyten und Retikulozyten bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung (Mittelwerte ± SD; n = 10);

*p < 0,05; ***p < 0,001
Gesamtzahl der Leukozyten

Tabelle 30: Gesamtzahl der Leukozyten bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung (Mittelwerte ± SD; n = 10)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Gesamtzahl der Leukozyten (10³/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>35,30 ± 11,00</td>
</tr>
<tr>
<td>Ethanol-Kontrolle</td>
<td>28,30 ± 11,78</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG, 3 x i.m.)</td>
<td>17,06*** ± 3,72</td>
</tr>
<tr>
<td>1 µg/l</td>
<td>26,40 ± 15,80</td>
</tr>
<tr>
<td>5 µg/l</td>
<td>20,20** ± 7,72</td>
</tr>
<tr>
<td>10 µg/l</td>
<td>29,80 ± 12,97</td>
</tr>
<tr>
<td>15 µg/l</td>
<td>16,65*** ± 4,06</td>
</tr>
</tbody>
</table>

p < 0,01, *p < 0,001

Abbildung 28: Gesamtzahl der Leukozyten bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung (Mittelwerte ± SD; n = 10); **p < 0,01; ***p < 0,001
Weiβes Differentialblutbild

Tabelle 31: Weiβes Differentialblutbild bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung (Mittelwerte ± SD; n = 10)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Lymphozyten (%)</th>
<th>Heterophile Granulozyten (%)</th>
<th>Monozyten (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>95,6 ± 1,7</td>
<td>4,4 ± 1,9</td>
<td>0,00 ± 0,0</td>
</tr>
<tr>
<td>Ethanol-Kontrolle</td>
<td>96,8 ± 0,9</td>
<td>3,2 ± 0,9</td>
<td>0,00 ± 0,0</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>98,0** ± 0,9</td>
<td>2,0** ± 0,9</td>
<td>0,00 ± 0,0</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>95,1 ± 1,4</td>
<td>4,9 ± 1,2</td>
<td>0,00 ± 0,0</td>
</tr>
<tr>
<td>5 µg NP/l</td>
<td>95,9 ± 1,0</td>
<td>4,1 ± 1,0</td>
<td>0,00 ± 0,0</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>95,9 ± 0,9</td>
<td>4,1 ± 1,1</td>
<td>0,00 ± 0,0</td>
</tr>
<tr>
<td>15 µg NP/l</td>
<td>95,6 ± 0,9</td>
<td>4,4 ± 0,8</td>
<td>0,00 ± 0,0**</td>
</tr>
</tbody>
</table>

Abbildung 29: Weiβes Differentialblutbild bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Behandlung (Mittelwerte ± SD; n = 10); **p < 0,01
Versuch D: Langzeitexposition juveniler Karpfen in kommunalem Abwasser (AbwasserVersuchsstand Großlappen) bzw. Behandlung mit Ethinylestradiol (EE2)

Hämoglobin, Hämatokrit, Gesamtzahl der Erythrozyten

Tabelle 32: Hämoglobingehalt, Hämatokrit und Gesamtzahl der Erythrozyten bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Hämoglobin (g/dl)</th>
<th>Hämatokrit (%)</th>
<th>Erythrozyten (in $10^6/\mu l$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>8,65 ± 1,95</td>
<td>42,30 ± 6,13</td>
<td>1,69 ± 0,30</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>7,03* ± 0,67</td>
<td>32,45** ± 1,23</td>
<td>1,48 ± 0,19</td>
</tr>
<tr>
<td>Abwasser</td>
<td>6,71*** ± 0,86</td>
<td>33,50** ± 3,32</td>
<td>1,13** ± 0,32</td>
</tr>
<tr>
<td>Abwasser + Arkopal</td>
<td>7,00*** ± 0,61</td>
<td>36,15* ± 3,07</td>
<td>1,39* ± 0,18</td>
</tr>
</tbody>
</table>

*p < 0,05, **p < 0,01, ***p < 0,001
Abbildung 30: Hämoglobingehalt bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10); *p < 0,05; ***p<0,001

Abbildung 31: Hämatokrit bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10); *p < 0,05, **p < 0,01
Abbildung 32: Gesamtzahl der Erythrozyten bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10); *p < 0,05, **p < 0,01

Erythrozytenindices

Tabelle 33: Erythrozytenindices bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>MCHC (g Hb/dl Ery.)</th>
<th>MCH (pg)</th>
<th>MCV (µm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>202,85 ± 28,73</td>
<td>517,80 ± 112,06</td>
<td>255,73 ± 48,29</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>216,47 ± 17,39</td>
<td>481,23 ± 76,90</td>
<td>221,90 ± 27,93</td>
</tr>
<tr>
<td>Abwasser</td>
<td>199,99 ± 1,41</td>
<td>749,50 ± 584,80</td>
<td>367,81 ± 265,17</td>
</tr>
<tr>
<td>Abwasser + Arkopal</td>
<td>194,01 ± 1,43</td>
<td>508,21 ± 55,59</td>
<td>262,70 ± 29,01</td>
</tr>
</tbody>
</table>

*p<0,05
Rotes Differentialblutbild

Sowohl bei Karpfen beider Abwasser-Versuche als auch bei EE2-behandelten Individuen ergab die Auswertung des roten Differentialblutbildes eine signifikante Zunahme des prozentualen Anteils von Retikulozyten im Vergleich zu Kontrolltieren. Die Ergebnisse der Zählung der Erythrozyten und Retikulozyten sind in Tabelle 34 und in Abbildung 33 dargestellt.

Tabelle 34: Prozentualer Anteil von Erythrozyten und Retikulozyten bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Erythrozyten (%)</th>
<th>Retikulozyten (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>98,00 ± 1,18</td>
<td>2,00 ± 1,18</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>81,90***± 5,94</td>
<td>18,10***± 5,94</td>
</tr>
<tr>
<td>Abwasser</td>
<td>96,70*± 1,27</td>
<td>3,30*± 1,27</td>
</tr>
<tr>
<td>Abwasser + Arkopal</td>
<td>93,40***± 1,67</td>
<td>6,60***± 1,67</td>
</tr>
</tbody>
</table>

*p < 0,05, ***p<0,001

Abbildung 33: Prozentualer Anteil von Erythrozyten und Retikulozyten bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10); *p < 0,05
Gesamtzahl der Leukozyten

Tabelle 35: Gesamtzahl der Leukozyten bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Gesamtzahl der Leukozyten (10³/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>22,65 ± 4,98</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>73,70***± 17,20</td>
</tr>
<tr>
<td>Abwasser</td>
<td>25,60 ± 3,78</td>
</tr>
<tr>
<td>Abwasser + Arkopal</td>
<td>27,80 ± 5,33</td>
</tr>
</tbody>
</table>

***p < 0,001

Abbildung 34: Gesamtzahl der Leukozyten bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10); ***p < 0,001

Weißes Differentialblutbild

Tabelle 36: Weiβes Differentialblutbild bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Lymphozyten (%)</th>
<th>Heterophile Granulozyten (%)</th>
<th>Monozyten (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>95,2 ± 1,4</td>
<td>4,8 ± 1,4</td>
<td>0,0 ± 0,0</td>
</tr>
<tr>
<td>EE2 (500 µg/ kg)</td>
<td>98,2** ± 0,7</td>
<td>1,8** ± 0,7</td>
<td>0,0 ± 0,0</td>
</tr>
<tr>
<td>Abwasser</td>
<td>95,5 ± 1,1</td>
<td>4,5 ± 1,1</td>
<td>0,0 ± 0,0</td>
</tr>
<tr>
<td>Abwasser + Arkopal</td>
<td>95,1 ± 1,4</td>
<td>4,9 ± 1,4</td>
<td>0,0 ± 0,0</td>
</tr>
</tbody>
</table>

**p < 0,01

Abbildung 35: Weiβes Differentialblutbild bei juvenilen Karpfen nach Exposition in Abwasser bzw. nach EE2-Behandlung (Mittelwerte ± SD; n = 10); **p < 0,01
2.1.3. Klinisch-chemische Untersuchungen (Versuch A und B)

Versuch A: Intervall-Exposition adulter Regenbogenforellen in Nonylphenol (NP)

Enzymaktivität (GOT, GPT, AP)

Die Plasmaaktivitäten der Transaminasen GOT und GPT sowie der alkalischen Phosphatase AP ließen bei NP-exponierten Individuen eine deutliche Abnahme erkennen. Während die GOT und die GPT nur bei Fischen der höchsten Testkonzentration von 10 µg/l eine signifikante Abnahme ihrer Aktivität zeigten, erwies sich die Aktivität der AP nur bei Fischen, die 1 µg NP/l ausgesetzt waren, als deutlich vermindert. Tabelle 37 und Abbildung 36 bis 38 geben einen Überblick über die Analysenergebnisse.

Tabelle 37: Enzymaktivität im Blutplasma bei adulten Regenbogenforellen nach NP-Exposition (Mittelwerte ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>GOT (U/l)</th>
<th>GPT (U/l)</th>
<th>AP (U/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>237,9 ± 41,5</td>
<td>9,3 ± 1,3</td>
<td>127,9 ± 46,6</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>193,7 ± 44,7</td>
<td>8,5 ± 1,4</td>
<td>74,4**± 25,8</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>134,0***± 30,7</td>
<td>6,8***± 0,6</td>
<td>94,0 ± 20,7</td>
</tr>
</tbody>
</table>

p < 0,01, *p<0,001
Abbildung 36: GOT-Aktivität im Blutplasma bei adulten Regenbogenforellen nach NP-Exposition (Mittelwerte ± SD; n = 12); ***p < 0,001

Abbildung 37: GPT-Aktivität im Blutplasma bei adulten Regenbogenforellen nach NP-Exposition (Mittelwerte ± SD; n = 12); ***p < 0,001
Abbildung 38: AP-Aktivität im Blutplasma bei adulten Regenbogenforellen nach NP-Exposition (Mittelwerte ± SD; n = 12); **p < 0,01

Glukose- und Kalziumgehalt

Tabelle 38: Glukose- und Kalziumgehalt im Blutplasma bei adulten Regenbogenforellen nach NP-Exposition (Mittelwerte ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Glukose (mg/dl)</th>
<th>Kalzium (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>105,91 ± 30,02</td>
<td>12,56 ± 2,03</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>106,18 ± 28,98</td>
<td>12,04 ± 2,99</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>120,31 ± 20,16</td>
<td>9,65** ± 1,41</td>
</tr>
</tbody>
</table>

**p < 0,01
Abbildung 39: Glukose im Blutplasma bei adulten Regenbogenforellen nach NP-Exposition (Mittelwerte ± SD; n = 12)

Abbildung 40: Kalzium im Blutplasma bei adulten Regenbogenforellen nach NP-Exposition (Mittelwerte ± SD; n = 12); **p < 0,01
Versuch B: Behandlung adulter Regenbogenforellen mit Ethinylestradiol (EE2)

Enzymaktivität (GOT, GPT, AP)

Tabelle 38: Enzymaktivität im Blutplasma bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>GOT (U/l)</th>
<th>GPT (U/l)</th>
<th>AP (U/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>132,2 ± 77,4</td>
<td>9,9 ± 5,2</td>
<td>117,8 ± 28,5</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>135,0 ± 39,6</td>
<td>9,4 ± 2,2</td>
<td>99,1 ± 25,2</td>
</tr>
</tbody>
</table>

Abbildung 41: GOT-Aktivität im Blutplasma bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwerte ± SD; n = 12)
Abbildung 42: GPT-Aktivität im Blutplasma bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwerte ± SD; n = 12)

Abbildung 43: AP-Aktivität im Blutplasma bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwerte ± SD; n = 12)
Glucose- und Kalziumgehalt

Tabelle 39: Glucose- und Kalzium-Gehalte im Blutplasma bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Glucose (mg/dl)</th>
<th>Kalzium (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>127,13 ± 20,91</td>
<td>11,83 ± 2,90</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG)</td>
<td>70,60***± 9,07</td>
<td>25,11***± 6,00</td>
</tr>
</tbody>
</table>

***p < 0,001

Abbildung 44: Glucose-Gehaltes im Blutplasma bei adulten Regenbogenforellen nach EE2-Behandlung (Mittelwert ± SD; n = 12); ***p < 0,001
2.1.4 Histopathologische Untersuchungsbefunde (Versuch A bis D)

Im folgenden soll ein Überblick über die, bei Fischen der verschiedenen Versuchsansätze erhobenen, histopathologischen Befunde gegeben werden. Die Ausführungen konzentrieren sich hierbei auf eine qualitative Beschreibung der histopathologischen Befunde der einzelnen Organe. Kardinalbefunde, welche ausschließlich bei exponierten Testfischen und nicht gleichermaßen bei Kontrollindividuen zu beobachten waren, werden zudem anhand von photographischem Bildmaterial dokumentiert. Angaben zur Häufigkeit des Auftretens aller diagnostizierter pathologischer Veränderungen finden sich in den Tabellen 40 bis 42.

Versuch A und B: Histopathologische Untersuchungsbefunde bei adulten Regenbogenforellen

Die lichtmikroskopischen Untersuchungen ergaben sowohl bei NP-exponierten und EE2-behandelten adulten Regenbogenforellen als auch bei Kontrolltieren histopathologische Veränderungen im Bereich von Leber, Niere, Milz, Kiemen und Gonadengewebe. Dabei ergaben

Versuch A: Histopathologische Untersuchungsbefunde bei adulten Regenbogenforellen nach Exposition in Nonylphenol

Leber

Abbildung 46: Unverändertes Lebergewebe einer männlichen Regenbogenforelle mit hohem Glykogengehalt (→) (A, B); Unverändertes Lebergewebe einer weiblichen Regenbogenforelle, reduzierter Glykogengehalt (C, D). Primärvergrößerung 400 x, Färbung H&E (A, C), PAS (B, D)

Abbildung 47: Lebergewebe einer männlichen Regenbogenforelle nach 40-tägiger Intervall-Exposition in 10 µg NP/l mit deutlicher Reduktion des Glykogengehaltes. Primärvergrößerung 400 x; Färbung H&E (A), PAS (B)
Niere

Milz

Die im Bereich des Milzgewebes diagnostizierten Veränderungen waren bei Kontrolltieren und NP-exponierten Tieren gleichermaßen zu beobachten und beschränkten sich auf eine, in Einzelfällen auftretende, lymphozytäre Entspeicherung der Milz sowie eine erhöhte Phagozytose von Erythrozyten durch retikuloendotheliale Zellen (Erythrophagie).

Kiemen

Gonaden

Die histologische Untersuchung der Gonaden beschränkte sich auf die Beurteilung männlichen Gonadengewebes. Neben pathologischen Veränderungen ging dabei auch das zum Zeit-
Ergebnisse, Seite 114

Versuch B: Histopathologische Untersuchungsbefunde bei adulten Regenbogenforellen nach Behandlung mit Ethinylestradiol

Leber

Abbildung 48: Lebergewebe einer männlichen Regenbogenforelle nach EE2-Behandlung, mit großtropfiger Vakuolisierung der Hepatozyten und Glykogendepletion. Primärvergrößerung 400 x, Färbung H&E (A), PAS (B)
Niere

Abbildung 49: Unverändertes Nierengewebe einer Regenbogenforelle (A); Nierengewebe einer Regenbogenforelle nach EE2-Behandlung, Blutaustritt in den Bowman'schen Raum (→) (B). Primärvergrößerung 400 x, Färbung H&E

Milz

Kiemen

Kontrolltiere und EE2-behandelte Fische ließen gleichartige pathologische Veränderungen der Kiemen erkennen. Die Veränderungen umfaßten eine Ödematisierung der Sekundärlamellen, fokale entzündliche Infiltrate, degenerative Veränderungen respiratorischer Epithelzellen, Teleangiektasien sowie eine Proliferation interlamellarer Zellen, respiratorischer Epithelzellen und Schleimzellen.

Gonaden

Abbildung 50: Unverändertes Hodengewebe einer geschlechtsreifen Regenbogenforelle (Stadium III), Spermien stellen den vorherrschenden Zelltyp dar (A); Hodengewebe einer geschlechtsreifen Regenbogenforelle nach EE2-Behandlung (Stadium I), Spermatozyten stellen den vorherrschenden Zelltyp dar (B). Primärvergrößerung 400 x, Färbung H&E
Tabelle 40: Histologische Befunde bei adulten Regenbogenforellen nach NP-Exposition bzw. EE2-Behandlung (Versuch A und B)

<table>
<thead>
<tr>
<th></th>
<th>Versuch A</th>
<th>Versuch B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolle I</td>
<td>1 µg NP/l</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>w</td>
</tr>
<tr>
<td>Leber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatozyten diffus vakuolisiert</td>
<td>-</td>
<td>6/10</td>
</tr>
<tr>
<td>Hepatozytenstruktur kompakt, Glykogendepletion</td>
<td>2/2</td>
<td>4/10</td>
</tr>
<tr>
<td>Hepatozyten großtropfig vakuolisiert, Glykogendepletion</td>
<td>1/2</td>
<td>-</td>
</tr>
<tr>
<td>rosettenartige Anordnung der Hepatozyten</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate</td>
<td>-</td>
<td>8/10</td>
</tr>
<tr>
<td>Niere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umfangreiche Kalkablagerungen</td>
<td>2/2</td>
<td>9/10</td>
</tr>
<tr>
<td>Einzelzelluntergänge von Tubulusepithelzellen</td>
<td>2/2</td>
<td>8/10</td>
</tr>
<tr>
<td>Nekrose ganzer Tubulusanschnitte</td>
<td>1/2</td>
<td>2/10</td>
</tr>
<tr>
<td>Dezente Tubulusdilatation</td>
<td>-</td>
<td>3/10</td>
</tr>
<tr>
<td>Proteinzyylinder im Tubuluslumen</td>
<td>-</td>
<td>5/10</td>
</tr>
<tr>
<td>Hyalintropfige Speicherung</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hämorrhagien/Niereninterstitium/Rumpfniere</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hämorrhagien/Glomerula/Tubuli</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hämorrhagien/Kopfniere</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphozytäre Entspeicherung</td>
<td>-</td>
<td>1/10</td>
</tr>
<tr>
<td>Erhöhte Erythrophagie</td>
<td>-</td>
<td>1/10</td>
</tr>
</tbody>
</table>

*4-malige Behandlung mit EE2
Fortsetzung von Tabelle 40: Histologische Befunde bei adulten Regenbogenforellen nach NP-Exposition bzw. EE2-Behandlung (Versuch A und B)

<table>
<thead>
<tr>
<th></th>
<th>Versuch A</th>
<th>Versuch B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrolle I</td>
<td>1 µg NP/l</td>
</tr>
<tr>
<td></td>
<td>m w</td>
<td>m w</td>
</tr>
<tr>
<td>Kiemen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ödematisierung von Sekundär- lamellen</td>
<td>- 7/10</td>
<td>1/2 9/10</td>
</tr>
<tr>
<td>Entzündliche Infiltrate</td>
<td>- 4/10</td>
<td>2/2 8/10</td>
</tr>
<tr>
<td>Degeneration und Einzelzellnekrose von Epithelzellen</td>
<td>1/2 5/10</td>
<td>2/2 5/10</td>
</tr>
<tr>
<td>Teleangiektasien</td>
<td>1/2 2/10</td>
<td>- 1/10</td>
</tr>
<tr>
<td>Proliferation des interlamellaren Kryptenepithels bzw. respiratorischer Epithelzellen</td>
<td>1/2 3/10</td>
<td>1/2 5/10</td>
</tr>
<tr>
<td>Gonaden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ: Reife-Stadium I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>σ: Reife-Stadium II</td>
<td>2/10</td>
<td>-</td>
</tr>
<tr>
<td>σ: Reife-Stadium III</td>
<td>8/10</td>
<td>10/10</td>
</tr>
<tr>
<td>σ: Nekroseherde</td>
<td>2/10</td>
<td>1/10</td>
</tr>
<tr>
<td>σ: Entzündlich-zellige Infiltration</td>
<td>-</td>
<td>1/10</td>
</tr>
</tbody>
</table>

*4-malige Behandlung mit EE2
Versuch C: Histopathologische Untersuchungsbefunde bei juvenilen Karpfen nach Exposition in Nonylphenol und Behandlung mit Ethinylestradiol

Die histologische Untersuchung ergab bei Kontrolltieren, Äthanol-Kontrollen sowie NP-exponierten Individuen in Art und Ausmaß vergleichbare Veränderungen nahezu aller untersuchten Organe. Eine Ausnahme bildeten die EE2-behandelten Karpfen, bei denen äußerst schwerwiegende Veränderungen insbesondere in Leber, Niere, Milz, Pankreas und Herz zu diagnostizieren waren. Tabelle 41 gibt einen Überblick über die bei Test- und Kontrollfischen diagnostizierten Organveränderungen

Leber

Abbildung 51: Unverändertes Lebergewebe eines Karpfens mit hohem Glykogengehalt (A, B); Lebergewebe eines Karpfens nach EE2-Behandlung, Hypertrophie und rosettenartige Anordnung von Hepatozyten, Glykogendepletion (C, D). Primärvergrößerung 400 x, Färbung H&E (A, C), PAS (B, D)

Pankreas

Im Bereich des Pankreas waren bei Kontrollen und NP-exponierten Tieren keine pathologischen Veränderungen nachweisbar. EE2-behandelte Fische hingegen wiesen neben generalisierten Blutungen in das Pankreasgewebe, Alterationen im Bereich des exokrinen Pankreas in Form einer Reduktion von Zymogengranula der azinösen Zellen (Abbildung 52) auf.
Abbildung 52: Unverändertes Pankreasgewebe eines Karpfens mit Zymogengranula (→) (A); Pankreasgewebe eines Karpfens nach EE2-Behandlung, deutliche Abnahme von Zymogengranula (B). Primärvergrößerung 400x, Färbung H&E

Niere

Abbildung 53: Unverändertes Nierengewebe eines Karpfens (A); Nierengewebe eines Karpfens nach EE2-Behandlung, Ansammlung von eosinophilem Material und Blutungen in den Nierentubuli (→) (B) und den Glomerula (→) (C). Primärvergrößerung 400 x, Färbung H&E
Milz
Das Milzgewebe ließ bei Kontrollen und NP-exponierten Fischen in Einzelfällen granulomatöse Veränderungen vermutlich parasitären Ursprungs erkennen. Fische, die mit EE2 behandelt wurden, wiesen generell eine deutliche Zunahme retikuloendothelialer Zellen innerhalb des Milzparenchyms auf.

Herz

Kiemen

Haut

Schwimmblase

Mit Ausnahme der EE2-behandelten Tiere, bei denen gelegentlich dezente Blutungsherde in der Schwimmblasenwand zu beobachten waren, wurden im Schwimmblasengewebe von Test- und Kontrolltieren keine von der Norm abweichenden Befunde erhoben.

Versuch D: Histopathologische Untersuchungsbefunde bei juvenilen Karpfen nach Exposition in kommunalem Abwasser bzw. Behandlung mit Ethinylestradiol

Leber

Niere

Herz

Im Bereich von Perikard und Myokard waren bei Karpfen aller Versuchsansätze sowie den Kontrolltieren entzündlich-zellige Infiltrate nachweisbar. EE2-behandelte Tiere ließen zudem eine geringgradig ausgeprägte hyalinschollige Degeneration von Herzmuskelgewebe erkennen.

Kiemen

Haut

Insbesondere bei den Testtieren, aber auch bei einem Kontrolltier waren dezente, entzündlich-zellige Infiltrate in der Epidermis nachweisbar. Geringgradige degenerative Veränderungen der
Haut waren bei Abwasser-exponierten Fischen und einem EE2-behandelten Individuum zu beobachten.

Schwimmblase

Sowohl Kontrolltiere als auch Testfische ließen gelegentlich äußerst dezente entzündliche Infiltrate in der Schwimmblasenwand erkennen. Geringgradige subepitheliale Blutungen waren bei 4 EE2-behandelten Individuen und einem Fisch der Kontrollgruppe zu beobachten.
Tabelle 41: Histologische Befunde bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Applikation (Versuch C)

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle</th>
<th>Ethanol-</th>
<th>EE2-Kontrolle*</th>
<th>1 µg/l</th>
<th>5 µg/l</th>
<th>10 µg/l</th>
<th>20 µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatozyten vakuoliert/diffus</td>
<td>10/10</td>
<td>10/10</td>
<td>1/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
</tr>
<tr>
<td>Hypertrophie von Hepatozyten, Hyperämie, rosettenartige Anordnung von Hepatozyten</td>
<td>-</td>
<td>-</td>
<td>9/10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate</td>
<td>4/10</td>
<td>3/10</td>
<td>2/10</td>
<td>3/10</td>
<td>2/10</td>
<td>2/10</td>
<td>1/10</td>
</tr>
<tr>
<td>Pankreas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduktion von Zymogengranula</td>
<td>-</td>
<td>-</td>
<td>6/10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Blutungen</td>
<td>-</td>
<td>-</td>
<td>10/10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämorrhagien</td>
<td>-</td>
<td>-</td>
<td>10/10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Einzelzelluntergänge von Tubulusepithelzellen</td>
<td>10/10</td>
<td>10/10</td>
<td>9/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
</tr>
<tr>
<td>Nekrose ganzer Tubulusanschnitte</td>
<td>-</td>
<td>-</td>
<td>9/10</td>
<td>-</td>
<td>1/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltration/Interstitium</td>
<td>1/10</td>
<td>5/10</td>
<td>-</td>
<td>5/10</td>
<td>3/10</td>
<td>3/10</td>
<td>1/10</td>
</tr>
<tr>
<td>Parasiten/parasitäre Granulome (Myxosporidien)</td>
<td>4/10</td>
<td>5/10</td>
<td>-</td>
<td>2/10</td>
<td>3/10</td>
<td>6/10</td>
<td>5/10</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermehrung des RES</td>
<td>-</td>
<td>-</td>
<td>10/10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parasiten-Granulome</td>
<td>1/10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Herz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate/Perikard/Myokard</td>
<td>9/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
</tr>
<tr>
<td>Blutungen/Perikard</td>
<td>-</td>
<td>-</td>
<td>8/10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*3-malige EE2-Behandlung
Fortsetzung von Tabelle 41: Histologische Befunde bei juvenilen Karpfen nach NP-Exposition bzw. EE2-Applikation (Versuch C)

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle</th>
<th>Ethanol-Kontrolle</th>
<th>EE2-Kontrolle*</th>
<th>1 µg/l</th>
<th>5 µg/l</th>
<th>10 µg/l</th>
<th>20 µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiemen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degeneration (Vakuolisierung) und Einzelzellnekrose respiratorischer Epithelzellen</td>
<td>10/10</td>
<td>8/10</td>
<td>6/10</td>
<td>7/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
</tr>
<tr>
<td>Hypertrophie v. Epithelzellen ("Spikes")</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
</tr>
<tr>
<td>Degeneration v. Epithelzellen der Primärlamellen</td>
<td>1/10</td>
<td>7/10</td>
<td>-</td>
<td>-</td>
<td>1/10</td>
<td>2/10</td>
<td></td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate</td>
<td>-</td>
<td>2/10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Proliferation respiratorischer Epithelzellen, Schleimzellen, interlamellaren Kryptenepithels</td>
<td>5/10</td>
<td>7/10</td>
<td>10/10</td>
<td>6/10</td>
<td>-</td>
<td>5/10</td>
<td>1/10</td>
</tr>
<tr>
<td>Magen-Darm-Trakt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate, Submukosa, Muskularis</td>
<td>6/10</td>
<td>9/10</td>
<td>2/10</td>
<td>5/10</td>
<td>2/10</td>
<td>2/10</td>
<td>2/10</td>
</tr>
<tr>
<td>Hämorrhagien</td>
<td>-</td>
<td>-</td>
<td>5/10</td>
<td>-</td>
<td>4/10</td>
<td>1/10</td>
<td></td>
</tr>
<tr>
<td>Haut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate</td>
<td>7/10</td>
<td>7/10</td>
<td>3/10</td>
<td>9/10</td>
<td>10/10</td>
<td>9/9</td>
<td>7/10</td>
</tr>
<tr>
<td>Degeneration von Epidermiszellen</td>
<td>1/10</td>
<td>2/10</td>
<td>1/10</td>
<td>4/10</td>
<td>6/10</td>
<td>3/9</td>
<td>5/10</td>
</tr>
<tr>
<td>Schwimmblase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltration</td>
<td>-</td>
<td>-</td>
<td>1/10</td>
<td>-</td>
<td>1/10</td>
<td>1/10</td>
<td>1/10</td>
</tr>
<tr>
<td>Hämorrhagien</td>
<td>-</td>
<td>-</td>
<td>4/10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*3-malige EE2-Behandlung
Tabelle 42: Histologische Befunde bei juvenilen Karpfen nach Abwasser-Exposition bzw. EE2-Behandlung (Versuch D)

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle</th>
<th>EE2-Kontrolle*</th>
<th>Abwasser</th>
<th>Abwasser + Arcopal (10 µg Nonylphenol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatozyten vakuolisiert/diffus</td>
<td>10/10</td>
<td>9/10</td>
<td>1/10</td>
<td>1/10</td>
</tr>
<tr>
<td>Hypertrophie von Hepatozyten, Hyperämie, rosettenartige Anordnung von Hepatozyten</td>
<td>-</td>
<td>1/10</td>
<td>9/10</td>
<td>9/10</td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate/ Einzelzelluntergänge</td>
<td>7/10</td>
<td>6/10</td>
<td>1/10</td>
<td>2/10</td>
</tr>
<tr>
<td>Pankreas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduktion von Zymogengranula</td>
<td>-</td>
<td></td>
<td>8/10</td>
<td>6/10</td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate</td>
<td>1/10</td>
<td>1/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niere</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einzelzelluntergänge von Tubulusepithelzellen</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
<td>10/10</td>
</tr>
<tr>
<td>Nekrose ganzer Tubulusanschnitte</td>
<td>-</td>
<td>2/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dezente Tubulusdilatation</td>
<td>1/10</td>
<td>1/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hyalintropfige Speicherung</td>
<td>4/10</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Proteinzylinder im Tubuluslumen</td>
<td>2/10</td>
<td>1/10</td>
<td>1/10</td>
<td>3/10</td>
</tr>
<tr>
<td>Zelluntergänge im Interstitium</td>
<td>2/10</td>
<td>-</td>
<td>2/10</td>
<td>2/10</td>
</tr>
<tr>
<td>Parasiten/parasitäre Granulome (Myxosporidien)</td>
<td>1/10</td>
<td>1/10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Milz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate</td>
<td>3/10</td>
<td></td>
<td>4/10</td>
<td>1/10</td>
</tr>
</tbody>
</table>
Fortsetzung von Tabelle 42: Histologische Befunde bei juvenilen Karpfen nach Abwasser-Exposition bzw. EE2-Behandlung

<table>
<thead>
<tr>
<th></th>
<th>Kontrolle</th>
<th>EE2-Kontrolle*</th>
<th>Abwasser</th>
<th>Abwasser + Arcopal (10 µg Nonylphenol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate/Perikard/Myokard</td>
<td>10/10</td>
<td>10/10</td>
<td>7/10</td>
<td>8/10</td>
</tr>
<tr>
<td>Hyalinschollige Degeneration</td>
<td>-</td>
<td>6/10</td>
<td>2/10</td>
<td>-</td>
</tr>
<tr>
<td>Kiemen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degeneration (Vakuolisierung) und Einzelzellnekrose respiratorischer Epithelzellen</td>
<td>8/9</td>
<td>10/10</td>
<td>9/10</td>
<td>9/10</td>
</tr>
<tr>
<td>Ödematisierung von Sekundärlamellen</td>
<td>-</td>
<td>5/10</td>
<td>2/10</td>
<td>2/10</td>
</tr>
<tr>
<td>Degeneration v. Epithelzellen der Primärlamellen</td>
<td>3/9</td>
<td>9/10</td>
<td>7/10</td>
<td>7/10</td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate</td>
<td>-</td>
<td>2/10</td>
<td>5/10</td>
<td>4/10</td>
</tr>
<tr>
<td>Proliferation respiratorischer Epithelzellen, Schleimzellen, interlamellarer Kryptenepithelzellen</td>
<td>7/9</td>
<td>4/10</td>
<td>4/10</td>
<td>5/10</td>
</tr>
<tr>
<td>Magen-Darm-Trakt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate</td>
<td>10/10</td>
<td>8/10</td>
<td>7/10</td>
<td>3/10</td>
</tr>
<tr>
<td>Haut</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltrate</td>
<td>1/8</td>
<td>5/10</td>
<td>10/10</td>
<td>6/10</td>
</tr>
<tr>
<td>Degeneration v. Epidermiszellen</td>
<td>-</td>
<td>1/10</td>
<td>3/10</td>
<td>-</td>
</tr>
<tr>
<td>Schwimmblase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entzündlich-zellige Infiltration</td>
<td>3/10</td>
<td>1/10</td>
<td>3/9</td>
<td>-</td>
</tr>
<tr>
<td>Blutungen</td>
<td>1/10</td>
<td>4/10</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*1-malige EE2-Behandlung
2.1.5 Elektronenmikroskopische Befunde (Versuch A bis D)

Die elektronenmikroskopischen Untersuchungsbefunde sind dem Teilbericht II des Zoologischen Instituts der Universität Heidelberg zu entnehmen.

2.1.6 Nonylphenol-Rückstände im Fischgewebe (Versuch A bis C)

Abbildung 54: NP-Rückstände in Gehirn, Leber, Gonaden und Fettgewebe von Regenbogenforellen nach 4-wöchiger Intervall-Exposition in 1 bzw. 10 µg NP/l (Versuch A; n = 6) sowie in Kontrolltieren bzw. nach EE2-Behandlung (Versuch B; n = 4); *p < 0,05

2.1.7 Ergebnisse der Studie zur Pharmakokinetik von Nonylphenol (Versuch I)

2.1.8 Ergebnisse der genotoxikologischen Untersuchungen (Versuch G und H)

Versuch G: Chromosomenaberrations-Analyse in Fischeiern

Versuch H: SCE-Test an adulten Hundsfischen

Abbildung 56: Chromosomen eines Nordamerikanischen Hundsfisches (Umbra pygmaea) in der Metaphase; der Austausch genetischen Materials zwischen 2 Schwesterchromatiden (→) wird anhand einer Differentialfärbung (Hoechst 33258; Giemsafärbung) sichtbar gemacht
So nahm die SCE-Rate mit steigender NP-Testkonzentration zu. Während die SCE-Rate bei Kontrolltieren bei $1,04 \pm 1,31$ SCE’s pro Metaphase lag, war diese bei Tieren, welche für 8 Tage $1 \, \mu g \, NP/l$ ausgesetzt waren mit $1,10 \pm 1,12$ SCE’s pro Metaphase bereits geringfügig erhöht. Bei Fischen, die $10 \, \mu g \, NP/l$ ausgesetzt waren, war die SCE-Rate gegenüber Kontrolltieren signifikant erhöht und lag bei $1,54 \pm 1,30$ SCE’s pro Metaphase (Abbildung 57).

Abbildung 57: Anzahl der SCE’s/Metaphase in Nordamerikanischen Hundsfischen (Umbra pygmaea) nach 8-tägiger Exposition in Nonylphenol; $p < 0,05$

2.2 Reproduktionstoxikologische und endokrinologische Untersuchungen

2.2.1 Ergebnisse der Reproduktionsstudien (Versuch A, B und F)

Versuch A und B: Reproduktionserfolg bei Regenbogenforellen (Versuch A und B)

Einzelpaarungen (Versuch A)
Im Rahmen von Versuch A wurden Einzelpaarungen durchgeführt. Dabei erfolgte die künstliche Befruchtung von einem Eipool unbelasteter Geschwisterfische mit den Spermaproben der einzelnen männlichen Individuen aus Versuch A (Kontrolltiere, 1 µg NP/l und 10 µg NP/l). Die Eiverluste, die bis zum Augenpunktstadium sowie zwischen Augenpunktstadium und Schlupf auftraten, wurden protokolliert. Die Untersuchungen ergaben nach Exposition in 1 bzw. 10 µg NP/l eine geringgradige Zunahme der Eiverluste bis zum Augenpunktstadium auf 37,2 bzw. 40 % gegenüber 30 % bei den Kontrolltieren. Hieraus resultierte eine Befruchtungsrate von 70 % bei den Kontrollfischen und von 62,8 % bzw. 60 % bei den in 1 bzw. 10 µg NP/l exponierten Fischgruppen. Darüber hinaus kam es zu einem geringfügigen Anstieg von Verlusten zu einem späteren Zeitpunkt der Entwicklung zwischen Augenpunktstadium und Schlupf. So waren in diesem Stadium in der Kontrollgruppe 7,6 %, nach Exposition in 1 µg NP/l 8,9 % und nach Einwirkung von 10 µg NP/l 9,9 % Verluste zu verzeichnen. Als Konsequenz ergab sich bei unbehandelten Kontrolltieren eine Schlupfrate von 62,4 %, während diese in der 1 µg NP/l-Gruppe bei 53,8 % und in der 10 µg NP/l-Gruppe bei 50,1 % lag. Die genannten Unterschiede zwischen NP-exponierten und Kontrolltieren ließen keine statistische Signifikanz erkennen (Abbildung 58).

Abbildung 58: Reproduktionserfolg bei Regenbogenforellen nach Exposition der männlichen Elterntiere in Nonylphenol (Einzelpaarungen, Versuch A)

Poolpaarungen (Versuch A und B)

Abbildung 59: Reproduktionserfolg bei Regenbogenforellen nach 40-tägiger Intervall-Exposition in Nonylphenol (Poolpaarungen, Versuch A); *p<0,05, ***p<0,001
Versuch F: Reproduktionserfolg bei Medakas

2.2.2 Ermittlung von Mortalität und Mißbildungen (Versuch A, B und F)

Versuch A und B: Mortalität und Mißbildungen bei Regenbogenforellenbrut

Ergebnisse aus den Einzelpaarungen (Versuch A)

Die Untersuchung der, den Einzelpaarungen von Versuch A entstammenden Regenbogenforellenbrut, ließ bei den Nachkommen NP-exponierter männlicher Tiere, gepaart mit unbehandelten weiblichen Fischen weder eine erhöhte Mortalität noch Anzeichen für eine Zunahme von Mißbildungen erkennen (Abbildung 61). Sowohl bei NP-exponierten als auch bei Kontrolltieren lag der Prozentsatz unauffälliger Brut bei über 90%.

Abbildung 61: Auftretenshäufigkeit von Mißbildungen bei Regenbogenforellenbrut nach Exposition der männlichen Elterntiere in Nonylphenol (Einzelpaarungen, Versuch A)
Ergebnisse aus den Poolpaarungen (Versuch A und B)

Abbildung 62: Auftretenshäufigkeit von Mißbildungen und Mortalität bei Regenbogenforellenbrut nach Exposition der Elterntiere in Nonylphenol (Nachkommen der Poolpaarungen, Versuch A) ; **p<0,01, ***p<0,001
Abbildung 63: Auftretenshäufigkeit von Mißbildungen, Mortalität und Entwicklungsstörungen bei Regenbogenforellenbrut nach EE2-Behandlung der Elterntiere (Poolpaarung, Versuch B); *p<0,05

Tabelle 43: Prozentualer Anteil verschiedener Mißbildungen bei Regenbogenforellenbrut (Poolpaarungen, Versuch A und B)

<table>
<thead>
<tr>
<th>Versuch</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konzentration</td>
<td>Kontrolle</td>
<td>1 µg NP/l</td>
</tr>
<tr>
<td>Wirbelsäulendeformationen</td>
<td>95,4</td>
<td>92,7</td>
</tr>
<tr>
<td>Bogenform</td>
<td>45,3</td>
<td>40,8</td>
</tr>
<tr>
<td>Knickform</td>
<td>40,6</td>
<td>33,7</td>
</tr>
<tr>
<td>Spiralform</td>
<td>9,4</td>
<td>18,2</td>
</tr>
<tr>
<td>Doppelmißbildungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siamesische Zwillinge</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dottersackduplikation</td>
<td>3,3</td>
<td>0,8</td>
</tr>
<tr>
<td>Sonstiges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maulsperre</td>
<td>1,3</td>
<td>6,5</td>
</tr>
</tbody>
</table>
Versuch F: Mortalität und Mißbildungen bei Medakas

2.2.3 Geschlechtsdifferenzierung und Gonadenentwicklung (Versuch E und F)

Versuch E: Geschlechtsdifferenzierung und Gonadenentwicklung bei juvenilen Regenbogenforellen

Abbildung 64: Hodengewebe einer 6 Monate alten männlichen Regenbogenforelle: Spermien-
gang (*), Spermatogonien (→) (A) ; Eierstockgewebe einer 6 Monate alten weiblichen Regen-
bogenforelle: Meiosestadien von Oogonien (→), Oozyte (*) (B). Primärvergrößerung 400 x,
Färbung H&E

Tabelle 44: Geschlechterverteilung bei juvenilen Regenbogenforellen nach Exposition in Nonylphenol (NP) bzw. Ethinylestradiol (EE2) unter unterschiedlichen Expositionsbedingungen.

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Exposition der Eltern-</th>
<th>Exposition der F1-</th>
<th>Gesamtzahl</th>
<th>m (%)</th>
<th>w (%)</th>
<th>m HA (%)</th>
<th>w HA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle 1</td>
<td>-</td>
<td>-</td>
<td>104</td>
<td>52</td>
<td>52</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Kontrolle 1</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>57</td>
<td>43</td>
<td>57%</td>
<td>43%</td>
</tr>
<tr>
<td>Kontrolle 2</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>54</td>
<td>45</td>
<td>54%</td>
<td>45%</td>
</tr>
<tr>
<td>EE2 2</td>
<td>4 x</td>
<td>-</td>
<td>100</td>
<td>45</td>
<td>51</td>
<td>45%</td>
<td>51%</td>
</tr>
<tr>
<td>Kontrolle 1</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>52</td>
<td>52</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Kontrolle 1</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>57</td>
<td>43</td>
<td>57%</td>
<td>43%</td>
</tr>
<tr>
<td>Kontrolle 2</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>54</td>
<td>45</td>
<td>54%</td>
<td>45%</td>
</tr>
<tr>
<td>EE2 2</td>
<td>4 x</td>
<td>-</td>
<td>100</td>
<td>45</td>
<td>51</td>
<td>45%</td>
<td>51%</td>
</tr>
<tr>
<td>Kontrolle 1</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>52</td>
<td>52</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Kontrolle 1</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>57</td>
<td>43</td>
<td>57%</td>
<td>43%</td>
</tr>
<tr>
<td>Kontrolle 2</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>54</td>
<td>45</td>
<td>54%</td>
<td>45%</td>
</tr>
<tr>
<td>EE2 2</td>
<td>4 x</td>
<td>-</td>
<td>100</td>
<td>45</td>
<td>51</td>
<td>45%</td>
<td>51%</td>
</tr>
</tbody>
</table>

Expositionsmodel II

Kontrolle 1	-	-	100	52	52	50%	50%		
Kontrolle 1	-	-	100	57	43	57%	43%		
Kontrolle 2	-	-	100	54	45	54%	45%	1%	
EE2 2	4 x	-	100	45	51	45%	51%	1%	3%
Kontrolle 1	-	-	100	52	52	50%	50%		
Kontrolle 1	-	-	100	57	43	57%	43%		
Kontrolle 2	-	-	100	54	45	54%	45%	1%	
EE2 2	4 x	-	100	45	51	45%	51%	1%	3%

Expositionsmodel III

EE2	-	1 d	80	43	36	1
EE2	-	1 d	80	43	36	1
EE2	-	1 d	80	43	36	1
EE2	-	1 d	80	43	36	1
Konzentration (µg NP/l)	Behandlungsdauer (7 d)	Männliche Individuen	Weibliche Individuen	Ergebnis	Prozent (±)	
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10 µg NP/l</td>
<td>7 d</td>
<td>93</td>
<td>46</td>
<td>47</td>
<td>(49%) (51%)</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>7 d</td>
<td>30</td>
<td>12*</td>
<td>18*</td>
<td>(40%) (60%)</td>
</tr>
</tbody>
</table>

Versuch A: Exposition 4-sömmeriger Laichfische 1996; Versuch B: Behandlung 4-sömmeriger Laichfische 1997; bei den mit * gekennzeichneten Tiergruppen wurde neben der Geschlechterverteilung auch die Gonadenreifung der exponierten Individuen gegenüber gleichaltrigen Kontrolltieren beurteilt (Ergebnisse siehe Tabelle 47); # aufgrund makroskopischer Beurteilung als männlich eingestufte Individuen (bei der histologischen Untersuchung erwiesen sich einzelne Tiere als unreife weibliche Fische); m: männlich; w: weiblich; HA: Hermaphroditen; * p < 0,05 (Chi-Quadrat-Test)

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Exposition der Eltern-</th>
<th>Exposition der F1-</th>
<th>Gesamtzahl</th>
<th>m</th>
<th>w</th>
<th>m HA</th>
<th>w HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expositionsmodel IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrolle</td>
<td>-</td>
<td>-</td>
<td>14</td>
<td>7</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(50 %)</td>
<td>(50 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrolle*</td>
<td>-</td>
<td>-</td>
<td>36</td>
<td>18</td>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(50 %)</td>
<td>(50 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrolle</td>
<td>-</td>
<td>-</td>
<td>366</td>
<td>170</td>
<td>196</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(46 %)</td>
<td>(54 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMSO (0,02 ‰)</td>
<td>-</td>
<td>2 Mon.</td>
<td>20</td>
<td>6</td>
<td>14*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(30 %)</td>
<td>(70 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>-</td>
<td>2 Mon.</td>
<td>145</td>
<td>93*</td>
<td>52*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(64 %)</td>
<td>(36 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMSO (0,02 ‰)</td>
<td>-</td>
<td>6 Mon.</td>
<td>14</td>
<td>8</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(57 %)</td>
<td>(43 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>-</td>
<td>6 Mon.</td>
<td>13</td>
<td>7</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(54 %)</td>
<td>(46 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>-</td>
<td>6 Mon.</td>
<td>13</td>
<td>7</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(54 %)</td>
<td>(46 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMSO (0,02 ‰)</td>
<td>-</td>
<td>12 Mon.</td>
<td>36</td>
<td>19</td>
<td>17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(53 %)</td>
<td>(47 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG, i.m.)</td>
<td>-</td>
<td>6 x</td>
<td>55</td>
<td>26</td>
<td>29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(47 %)</td>
<td>(53 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>-</td>
<td>12 Mon.</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(50 %)</td>
<td>(50 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>-</td>
<td>12 Mon.</td>
<td>36</td>
<td>18</td>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(50 %)</td>
<td>(50 %)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bei den mit * gekennzeichneten Tiergruppen wurde neben der Geschlechterverteilung auch die Gonadenreifung der exponierten Individuen gegenüber gleichaltrigen Kontrolltieren beurteilt (Ergebnisse siehe Tabelle 48); m: männlich; w: weiblich; HA: Hermaphroditen;

* p < 0,05; ** p < 0,01 (Chi-Quadrat-Test)

Abbildung 65: Hodengewebe mit Oozyte (→) bei einer 6-Monate alten Regenbogenforelle nach NP-Exposition der Elterntiere (A, B). Primärvergrößerung 400x (A), 1000x (B), Färbung H&E

Tabelle 46: Beurteilungskriterien des gonadalen Reifegrades

<table>
<thead>
<tr>
<th>Reifegrad</th>
<th>Morphologische Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Spermatogonien (Abbildung 67A)</td>
</tr>
<tr>
<td>II</td>
<td>Spermatogonien, Spermatozyten (Abbildung 67B)</td>
</tr>
<tr>
<td>III</td>
<td>Spermatozyten, Spermatiden, Spermien (Abbildung 67C)</td>
</tr>
<tr>
<td>weiblich</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Oozyten in unterschiedlichen Meiosestadien (Abbildung 68A)</td>
</tr>
<tr>
<td>II</td>
<td>perinukleäre Oozyten (Abbildung 68B)</td>
</tr>
<tr>
<td>III</td>
<td>Oozyten in der vitellogenen Phase (Abbildung 68C)</td>
</tr>
</tbody>
</table>
Abbildung 67: Reifegrade männlichen Gonadengewebes. Grad I (A); Grad II (B), Grad III (C); Primärvergrößerung 400x, Färbung H&E
Abbildung 68: Reifegrade weiblichen Gonadengewebes. Grad I (A); Grad II (B), Grad III (C); Primärvergrößerung 400x, Färbung H&E

Tabelle 47: Gonadenentwicklung (Reifegrad I-III) bei juvenilen Regenbogenforellen (F1) nach Exposition der Elterntiere in Nonylphenol (NP) bzw. Ethinylestradiol (EE2)

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>männlich</th>
<th>weiblich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiergruppe</td>
<td>n I II III HA I II III HA</td>
<td></td>
</tr>
<tr>
<td>Kontrolle¹</td>
<td>100 43 10 4 - 1 5 37 -</td>
<td></td>
</tr>
<tr>
<td>10 µg NP/l¹</td>
<td>100 32 10 3 - 6 1 48 -</td>
<td></td>
</tr>
<tr>
<td>Kontrolle²</td>
<td>100 54 - - 1 5 40 -</td>
<td></td>
</tr>
<tr>
<td>EE² (500 µg/kg KG, 100 i.m.)</td>
<td>45 - - 1 2 49 3</td>
<td></td>
</tr>
</tbody>
</table>

¹Versuch A: Exposition 4-sömnriger Laichfische 1996; ²Versuch B: Behandlung 4-sömnriger Laichfische 1997; HA: Hermaphroditen; I-III: Reifegrade

Tabelle 48: Gonadenentwicklung (Reifegrad I-III) bei juvenilen Regenbogenforellen nach Langzeit-Exposition (12 Monate) in Nonylphenol (NP) bzw. Ethinylestradiol (EE2) ab dem Ei-Stadium

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Tierzahl</th>
<th>männlich</th>
<th>weiblich</th>
<th>HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>36</td>
<td>17 (94%)</td>
<td>1 (6%)</td>
<td>18 (100%)</td>
</tr>
<tr>
<td>DMSO (0,02 %)</td>
<td>36</td>
<td>19 (100%)</td>
<td>- (6%)</td>
<td>17 (100%)</td>
</tr>
<tr>
<td>EE2 (500 µg/kg KG, i.m.)</td>
<td>55</td>
<td>26 (100%)</td>
<td>- (11%)</td>
<td>29 (100%)</td>
</tr>
<tr>
<td>1 µg NP/l</td>
<td>36</td>
<td>15 (83%)</td>
<td>1 (6%)</td>
<td>2 (11%)</td>
</tr>
<tr>
<td>10 µg NP/l</td>
<td>40</td>
<td>18 (90%)</td>
<td>1 (5%)</td>
<td>20 (100%)</td>
</tr>
</tbody>
</table>

HA: Hermaphroditen; I-III: Reifegrade

Versuch F: Geschlechtsdifferenzierung und Gonadenentwicklung bei Medakas

Tabelle 49: Geschlechterverhältnis und Hermaphroditen-Bildung bei Medakas nach Exposition in NP- bzw. 17β-Östradiol

<table>
<thead>
<tr>
<th>Tiergruppe</th>
<th>Tierzahl</th>
<th>männlich</th>
<th>weiblich</th>
<th>HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>70</td>
<td>36</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>DMSO (0,02 %)</td>
<td>30</td>
<td>11*</td>
<td>19*</td>
<td>-</td>
</tr>
<tr>
<td>17β-Östradiol (100ng/l)</td>
<td>36</td>
<td>1***</td>
<td>35***</td>
<td>-</td>
</tr>
<tr>
<td>2 µg NP/l</td>
<td>17</td>
<td>5**</td>
<td>12***</td>
<td>-</td>
</tr>
<tr>
<td>20 µg NP/l</td>
<td>33</td>
<td>5***</td>
<td>27***</td>
<td>1</td>
</tr>
<tr>
<td>50 µg NP/l</td>
<td>24</td>
<td>4***</td>
<td>17***</td>
<td>3</td>
</tr>
</tbody>
</table>

HA: Hermaphroditen; * p < 0,05; ** p < 0,01; *** p < 0,001 (Chi-Quadrat-Test)
Abbildung 69: Unverändertes Hodengewebe eines Medaka (A); unverändertes Eierstockgewebe eines Medaka (B); Ovo-Testis nach Exposition in 50 µg NP/l, Hermaphroditentadium (C); Primärvergrößerung 100x (A, B), 400 x (C), Färbung H&E
2.2.4 Quantitativ-stereologische Untersuchungen zum Funktionszustand der Hypophyse adulter und juveniler Regenbogenforellen (Versuch A, B und E)

2.2.5 17ß-Östradiol-Gehalt im Blutplasma (Versuch A und B)

2.2.6 Vitellogenin-Gehalt im Blutplasma (Versuch A bis E)

Die Bestimmung von Vitellogenin im Blutplasma erfolgte am Institut für Zoologie der Universität Heidelberg. Die Untersuchungsergebnisse sind Teilbericht II zu entnehmen.

2.2.7 Immunhistochemische Lokalisation von Vitellogenin in den Hepatozyten (Versuch A und B)

Abbildung 70: Lebergewebe einer adulten männlichen Regenbogenforelle (A); Lebergewebe einer adulten weiblichen Regenbogenforelle, positiver immunhistochemischer Nachweis von Vitelligenin (braunes Reaktionsprodukt) (B); Lebergewebe einer adulten weiblichen Regenbogenforelle, mit Nonimmunserum behandelt, negativer immunhistochemischer Nachweis von Vitelligenin (C). Avidin-Biotin-Komplex Technik, Primärvergrößerung 1000x, Färbung DAB
V. Diskussion

1. Allgemeine Untersuchungen

2. Spezielle Untersuchungen

2.1 Toxikologische Untersuchungen

2.1.1 Verhaltensstudien

Die im Rahmen von Versuch C an juvenilen Karpfen mit Hilfe des Analysesystems Behavio-Quant® durchgeführten Verhaltensstudien ergaben deutliche Veränderungen im Schwimmverhalten. NP-exponierte Fische und EE2-behandelte Tiere ließen dabei ein sehr ähnliches Verhal-
V Diskussion, Seite 159

2.1.2 Hämatologische Untersuchungen

Die hämatologischen Untersuchungsergebnisse der Versuche A bis D ergaben bezüglich der, die roten Blutkörperchen betreffenden Parameter ein relativ einheitliches Bild. So stellte eine signifikante Abnahme der Gesamtzahl der Erythrozyten im Sinne des Vorliegens einer ausgeprägten Anämie sowohl nach NP-Exposition (Versuch C) und EE2-Behandlung (Versuch B), als auch nach Abwasser-Exposition (Versuch D) den vorherrschenden Befund dar. Bei Regenbogenforellen von Versuch A war lediglich eine Tendenz zur Abnahme der Erythrozytenzahlen nachweisbar. Während bei Nonylphenol-exponierten Individuen keine Veränderungen im Hinblick auf den Hämoglobingehalt zu beobachten waren, nahm dieser nach Behandlung mit EE2 bzw. bei Abwasser-exponierten Tieren deutlich ab, so daß in diesen Fällen eine hypochrome

Bezüglich der weißen Blutzellpopulationen ließ sich bei den verschiedenen Fischarten kein einheitliches Wirkungsmuster erkennen. So führte eine NP-Exposition von jungen Karpfen zu einer signifikanten Abnahme der Gesamtleukozytenzahl, während dieser Parameter bei exponierten adulten Regenbogenforellen gegenüber Kontrolltieren nicht signifikant verändert war.

2.1.3 Klinisch-chemische Untersuchungen

V Diskussion, Seite 162

2.1.4 Histopathologie der Organe

In der Milz EE2-behandelter Karpfen wurde in der Regel eine massive Zunahme retikuloendothelialer Zellen beobachtet. Aufgrund der bereits beschriebenen hämatologischen Befunde und der bei diesen Tieren ebenfalls stimulierten Vitellogeninsynthese (siehe Teilbericht II), ist dies als Folge eines erhöhten Bedarfs an phagozytierenden Zellen zu interpretieren, vermutlich um geschädigte Erythrozyten und Vitellogenin, welches nicht in Oozyten eingebaut werden konnte, zu entfernen.

daß eine additive Wirkung östrogen wirksamer Inhaltsstoffe des Abwassers für die geschilderten Alterationen verantwortlich sind.

2.1.5 Elektronenmikroskopie

Die Diskussion der elektronenmikroskopischen Befunde ist dem Teilbericht II des Instituts für Zoologie der Universität Heidelberg zu entnehmen.

2.1.6 Rückstandsanalytik

2.1.7 Pharmakokinetik

Die Untersuchungsergebnisse zur Pharmakokinetik von NP werden detailliert in der beiliegen-
den Dissertation “Untersuchungen zur neuroendokrinen Wirkung von Nonylphenol bei Fis-
schen“ (NARDY, 1999) diskutiert.

2.1.8 Genotoxikologische Untersuchungen

Bisherige Literaturangaben bezüglich eines möglichen genotoxischen Potentials von NP sind rar und z.T. widersprüchlich. Während sich NP im Mutagenitätstest nach Ames als nicht muta-
gen erwies (SCHÖBERL, 1984), ergab die Durchführung des Comet-Assays (single cell gel electrophoresis assay) ein mutagenes Potential von NP (ANDERSON et al., 1997). In vorlie-
eine Analyse von Chromosomenaberrationen an Eiern des Zebrabantbarsches (Cichlasoma nigrofasciatum). Zum anderen wurde ein SCE-Test (sister chromatid exchange test) an Hundsfisch-
en (Umbra pygmaea) durchgeführt. Dieser stellt eine, seit langem etablierte Methode dar, die sich zur Darstellung genotoxischer Wirkungen bei Fischen in vivo bewährt hat (KLIGER-
MAN & BLOOM, 1976; HOOFTMAN & VINK, 1981; KLIGERMAN et al., 1984; SCHWAIGER et al., 1993; NEGELE et al., 1995; SCHWAIGER et al., 1998). Hundsfische haben sich aufgrund ihres Chromosomentyps als besonders geeignete Fischart zur Darstellung eines Austausches von genetischem Material zwischen zwei Schwesterchromatiden erwiesen
(KLIGERMAN et al., 1975). Im Rahmen vorliegender Studie wurde bewußt auf in vivo Test-
verfahren an hoch organisierten Wirbeltieren zurückgegriffen, da diese, verglichen mit Unter-
suchungen an Bakterienstämmen wie z.B. dem Ames-Test, unter ökotoxikologischen Gesichts-
punkten eine höhere Aussagekraft besitzen. Die Untersuchungen ergaben Hinweise auf ein ge-
notoxisches Potential von NP. Während die Chromosomenaberrations-Analyse keine Hinweise
hierfür lieferte, war im SCE-Test ein signifikanter Anstieg der SCE-Rate nach Exposition in 10 µg NP/l nachweisbar. Somit wäre, basierend auf den Resultaten des SCE-Tests für genotoxi-
sche Wirkungen eine NOEC von 1 µg NP/l anzunehmen.
2.2 Endokrinologische und reproduktionstoxikologische Untersuchungen

2.2.1 Reproduktionserfolg

2.2.2 Mortalität und Mißbildungen

Im Anschluß an die im Rahmen von Versuch A und B durchgeführte Reproduktionsstudie erfolgte eine Untersuchung der Nachkommen bezüglich des Auftretens von Mortalität und Mißbildungen. Im Rahmen der Einzelpaarungen von Versuch A unterschieden sich die Nachkommen NP-exponierter männlicher Regenbogenforellen nicht von denen der Kontrolltiere. Der

2.2.3 Geschlechtsdifferenzierung und Gonadenentwicklung

2.2.4 Funktionszustand der Hypophyse

2.2.5 17β-Östradiol-Gehalt im Blutplasma

2.2.6 Vitellogeningehalt im Blutplasma (Versuch A bis E)

Eine Diskussion der Ergebnisse zur Bestimmung von Vitellogenin im Blut erfolgt im Teilbericht II des Instituts für Zoologie der Universität Heidelberg.
2.2.7 Immunhistochemische Lokalisation von Vitellogenin in den Hepatozyten

VI. Zusammenfassung

Das Ziel der in vorliegendem Bericht dargestellten Studien war es, anhand eines methodisch breit gefächerten Untersuchungsprogrammes eine möglichst umfassende Einschätzung sowohl des toxischen als auch des endokrinen Potentials der Industriechemikalie NP zu ermöglichen. Die ermittelten Effekte wurden Veränderungen, welche durch das synthetische Östrogen Ethinylöstradiol (EE2) induziert wurden, gegenüber gestellt.

geführt, die zum einen typische r-Strategen, zum anderen aber auch eine geschlechtlich eindeutig differenzierte Fischart darstellen (TAKASHIMA et al., 1980). Als zweite Fischart zur Erfassung möglicher Effekte im Hinblick auf Reproduktion und Geschlechtsdifferenzierung wurde der Medaka (Oryzias latipes) gewählt, welcher, Literaturangaben zufolge, ebenfalls eindeutig differenziert ist (YAMAMOTO, 1969).

Desweiteren lag bei der Konzeption der vorliegenden Studien der Gedanke zugrunde, daß eine Störung ökologisch relevanter Funktionen wie z.B. der Reproduktion nicht unbedingt eine Folge einer hormonähnlichen Wirkung von NP sondern auch eine Konsequenz toxischer Wirkungen sein kann. So wurden neben endokrinologischen Endpunkten auch klassische, medizinisch-toxikologische Untersuchungen durchgeführt. Je nach Versuchsansatz wurden Testkonzentrationen zwischen 1 und 15 µg NP/l gewählt. Dieser Konzentrationsbereich liegt zwar über den, zum gegenwärtigen Zeitpunkt beispielsweise in Bayern gemessenen Werten von 0,01 bis 0,08 µg/l in Flüssen bzw. 0,1 bis 0,4 µg/l an Lokalisationen unterhalb von Kläranlagen (ZELLNER & KALBFUS, 1997), jedoch weit unter den z.T. aus dem Europäischen Ausland bekannten Werten (AHEL et al., 1994 a, 1994b; BLACKBURN & WALDOCK, 1995).

den Nachkommen zur Folge haben. Ein verspätetes Auftreten von Effekten bei den Nachkommen exponierter Fische kann auch dadurch erklärt werden, daß lipophile Substanzen wie NP möglicherweise im Dotter der Fischeier akkumulieren und somit in hohen Konzentrationen an die Fischbrut weiter gegeben werden.

VII. Literatur

CESIO (1997): Position paper and questions and answers on alkylphenol ethoxylates and hormonal effects. Comité Européen des Agents de Surface et leurs Intermédiaires Organiques, Brussels
DANZO J.Y. (1997): Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environ. Health Persp. 105 (3), 294-301

GOETZ F.W., E.M. DONALDSON, G.A. HUNTER & H.M. DYE (1979): Effects of estradiol-17β and 17α-methyltestosterone on gonadal sex differentiation in the Coho salmon, Oncorhynchus kisutch, Aquaculture 17, 267-278

GORSKI J. & Q. HOU (1995): Embryonic estrogen receptors: Do they have a physiological function? Environ. Health Persp. 103 (Suppl. 7), 69-72

HÜLS (1996): EG-Sicherheitsdatenblatt: Nonylphenol, HÜLS Aktiengesellschaft, Marl

HÜLS (1997): persönliche Mitteilung

KÖRNER W., V. HANF, W. SCHULLER, U. BOLZ, R. TRIEBSKORN & H. HAGENMAIER (1998b): Effluents from municipal sewage plants are the major source for estrogenic active compounds in small rivers in south west Germany. GDCH-Tagung, Chemie und Umwelt, Karlsruhe, 27.-30.9.1998

LEWIS S.K. & J.J. LECH (1996): Uptake, disposition, and persistence of nonylphenol from water in rainbow trout (Oncorhynchus mykiss). Xenobiotica 26 (8), 813-819

MELDAHL A.C., K. NITHIPATIKOM & J.J. LECH (1996): Metabolism of several 14C-Nonylphenol isomers by rainbow trout (Oncorhynchus mykiss): in vivo and in vitro microsomal metabolites. Xenobiotica 26 (11), 1167-1180

NIMROD A.C. & W.H. BENSON (1996a): Estrogenic responses to xenobiotics in channel catfish (Ictalurus punctatus). Department of Pharmacology/RIPS, School of Pharmacy, The University of Mississippi, Univ., MS 38677, USA

NIMROD A.C. & W.H. BENSON (1996b): Environmental estrogenic effects of alkylphenol ethoxylates. Department of Pharmacology/RIPS, School of Pharmacy, The University of Mississippi, Univ., MS 38677, USA

PIFERRER F. & E.M. DONALDSON (1989): Gonadal differentiation in Coho salmon, Oncorhynchus kisutch, after a single treatment with androgen or estrogen at different stages during ontogenesis. Aquaculture 77, 251-262

SEIFERT M., S. HAINDL & B. HOCK (1996): Analytics of estrogens and xenoestrogens in the environment with receptor assays. Technische Universität, München/Weihenstephan, Botanisches Institut, Freising
SHEAHAN D. & J. HARRIES (1992): Effects of trace organics on fish. A joint study between the Directorate of Fisheries Research of the Ministry of Agriculture, Fisheries and Food, Brunel University and the Water Research Centre

SHEAHAN D.A., D. BUCKE, P. MATTHIESSEN, J.P. SUMPTER, M.F. KIRBY, P. NEALL & M. WALDOCK (1994): The effects of low levels of 17α-ethinylestradiol upon plasma vitellogenin levels in male and female rainbow trout, Oncorhynchus mykiss held at two acclimation temperatures. In: Sublethal and chronic effects of pollutants on freshwater fish. MÜLLER R. & R. LLOYD (eds), Published by Arrangement with the Food and Agriculture Organisation of the United Nations, Fishing News Book, Kap. 9, 99-112

SOTO A.M., K.L. CHUNG & C. SONNENSEHEIN (1994): The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ. Health Persp. 102, 380-383

