Immissionsökologie

Hintergrundwerte der atmosphärischen Deposition

Jahresmittelwerte 2001 – 2020

Stand: September 2021

Der Eintrag von Metallen in unsere Ökosysteme als trockener Staub oder über die Niederschläge wird am LfU nach dem Bergerhoff-Verfahren bestimmt.

Hierzu wird im Freiland ein Kunststoffbecher aufgestellt, der die Staubniederschläge (= Staubdeposition) sammelt. Die Bergerhoff-Sammler zur Erfassung der Hintergrundbelastung in Bayern sind an acht Stationen installiert und werden ganzjährig im 28-Tage-Rhythmus beprobt. Anschließend werden die Proben im Labor eingedampft und die festen Partikelrückstände auf eine Reihe von Elementen untersucht.

Die Ergebnisdarstellung erfolgt als Zeitreihe der Jahresmittelwerte für den ländlichen Hintergrund sowie für eine städtische Hintergrundstation.

Abbildungsverzeichnis

Abb.	1:	Messnetz der immissionsökologischen Dauerbeobachtungsstationen des LfU (grün: aktive Stationen; grau: deaktivierte Stationen).	4
Abb.	2:	Jahresmittelwerte der Aluminium-Deposition im ländlichen Hintergrund und an den städtischen DBS.	7
Abb.	3:	Jahresmittelwerte der Antimon-Deposition im ländlichen Hintergrund und an den städtischen DBS.	7
Abb.	4:	Jahresmittelwerte der Arsen-Deposition im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Arsen im Staubniederschlag nach TA Luft: 4 μg/m²d.	8
Abb.	5:	Jahresmittelwerte der Barium-Deposition im ländlichen Hintergrund und an den städtischen DBS.	8
Abb.	6:	Jahresmittelwerte der Bismut-Deposition im ländlichen Hintergrund, an den städtischen DBS.	9
Abb.	7:	Jahresmittelwerte der Blei-Deposition im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Bleideposition nach TA Luft: 100 $\mu g/m^2d$; zulässige Fracht nach BBodSchV: 110 $\mu g/m^2d$.	9
Abb.	8:	Jahresmittelwerte der Cadmium-Deposition im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Cadmiumdeposition nach TA Luft: $2 \mu g/m^2 d$; zulässige Fracht nach BBodSchV: $1,6 \mu g/m^2 d$.	10
Abb.	9:	Jahresmittelwerte der Cer-Deposition im ländlichen Hintergrund und an den städtischen DBS.	10
Abb.	10:	Jahresmittelwerte der Chrom-Deposition im ländlichen Hintergrund und an den städtischen DBS. Zulässige Fracht nach BBodSchV: 82 $\mu g/m^2 d$.	11
Abb.	11:	Jahresmittelwerte der Eisen-Deposition im ländlichen Hintergrund und an den städtischen DBS.	11
Abb.	12:	Jahresmittelwerte der Kobalt-Deposition im ländlichen Hintergrund und an den städtischen DBS.	12
Abb.	13:	Jahresmittelwerte der Kupfer-Deposition im ländlichen Hintergrund und an den städtischen DBS. Zulässige Fracht nach BBodSchV: 99 $\mu g/m^2 d$.	12
Abb.	14:	Jahresmittelwerte der Lanthan-Deposition im ländlichen Hintergrund und an den städtischen DBS.	13
Abb.	15:	Jahresmittelwerte der Mangan-Deposition im ländlichen Hintergrund und an den städtischen DBS.	13
Abb.	16:	Jahresmittelwerte der Molybdän-Deposition im ländlichen Hintergrund und an den städtischen DBS.	14
Abb.	17:	Jahresmittelwerte der Nickel-Deposition im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Nickeldeposition nach TA Luft: 15 μ g/m²d; zulässige Fracht nach BBodSchV: 27,4 μ g/m²d	14
Abb.	18:	Jahresmittelwerte der Niob-Deposition im ländlichen Hintergrund und an den städtischen DBS.	15
Abb.	19:	Jahresmittelwerte der Thallium-Deposition im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Thallium im Staubniederschlag nach TA Luft: 2 μg/m²d.	15
Abb.	20:	Jahresmittelwerte der Vanadium-Deposition im ländlichen Hintergrund und an den städtischen DBS.	16
Abb.	21:	Jahresmittelwerte der Zink-Deposition im ländlichen Hintergrund und an den städtischen DBS. Zulässige Fracht nach BBodSchV: 329 $\mu g/m^2 d$.	16
Abb.	22:	Jahresmittelwerte der Zinn-Deposition im ländlichen Hintergrund und an den städtischen DBS.	17
Abb.	23:	Jahresmittelwerte Gesamtstaubniederschlag im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Staubniederschlag zum Schutz vor Belästigungen oder erheblichen Nachteilen nach TA Luft: 350 mg/m²d.	17

Tabellenverzeichnis

Tab. 1: Jahresmittelwerte der Deposition im ländlichen Hintergrund [μg/m²d] 2001 – 2020 (MW Land = Jahresmittelwert der ländlichen geprägten DBS, Stabw = Standardabweichung, MUC / ANS = München (bis 2013) und Ansbach (ab 2017), AUG = Augsburg, BID = Bidingen, EIN = Eining, GRA = Grassau, KUL = Kulmbach, MOE = Möhrendorf, SCY = Scheyern, WBB = Weibersbrunn, WSS = Weißenstadt)

18

Hinweise zu Probenahme, Analytik, Berechnung und Darstellung

Probenahme

- Die Bestimmung des Staubniederschlags nach dem Bergerhoff-Verfahren (Auffanggefäße aus Kunststoff) erfolgt nach VDI-Richtlinie 4320 Blatt 2 (Berlin: Beuth 2012). Für die Messung wurden bis 2009 Schraubdeckelgefäße, anschließend bis 2018 Tupperbecher und seither Lock&Lock-Becher verwendet.
- Abb. 1 zeigt die Lage der Dauerbeobachtungsstationen (DBS) an denen das Bergerhoff-Verfahren durchgeführt wird, sowie ggf. das Jahr der Aufnahme ins Messnetz bzw. der Deaktivierung einer DBS. Die Staubniederschlagsmessung findet an den ländlichen DBS, an der städtischen Hintergrundstation Augsburg und an einer verkehrsbelasteten städtischen Station statt. Bis 2013 wurde an der verkehrsbelasteten Station München gemessen, die 2017 durch die Station in Ansbach ersetzt wurde. Eine Beschreibung der aktiven Stationen findet sich unter dem Link Stationen des immissionsökologischen Messnetzes LfU Bayern.

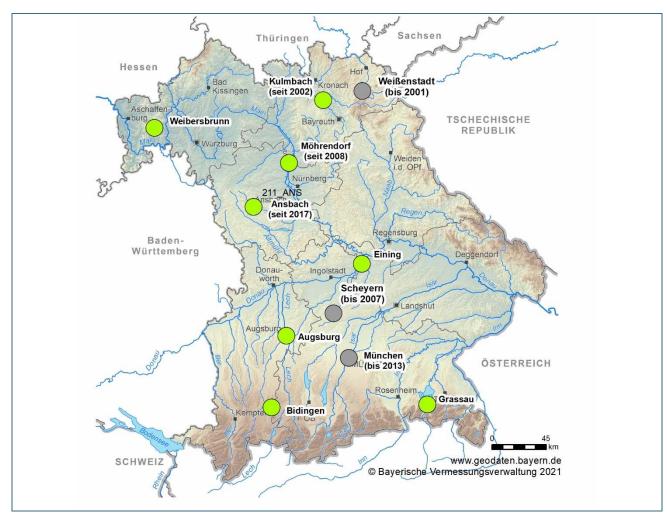


Abb. 1: Messnetz der immissionsökologischen Dauerbeobachtungsstationen des LfU (grün: aktive Stationen; grau: deaktivierte Stationen).

Analytik

- Quecksilber im Staubniederschlag wurde wegen der hohen Flüchtigkeit nicht bestimmt.
- Probenaufbereitung, Aufschluss und Analytik bis Jan. 2011: Zur Bestimmung von Staubmenge und Staubinhaltsstoffen des Staubniederschlags wird das in VDI 2267 Blatt 15 Variante C beschriebene Verfahren verwendet. Hierbei wird der Inhalt der Sammelgefäße durch ein Sieb aus Polyamid in tarierte Bechergläser überführt und eingedampft. Durch Differenzwägung wird die Staubmenge bestimmt. Dann werden 10 ml HNO3 und 2 ml H2O2 zugegeben und im Becherglas auf dem Heizblock zur Trockene eingedampft. Der Rückstand wird mit 2 % HNO3 aufgenommen, in ein Zentrifugenröhrchen überführt und auf 25 ml aufge-

füllt. Nach Verdünnung der Aufschlusslösung erfolgt die Bestimmung der Elementgehalte mittels Massenspektrometrie (ICP-MS, inductively coupled plasma – mass spectrometry) gemäß DIN EN ISO 17294. Das verwendete ICP-MS (7500 cx, Fa. Agilent) ist mit einer heliumbetriebenen Kollisionszelle zur Minimierung polyatomarer Interferenzen ausgestattet.

- Probenaufbereitung, Aufschluss und Analytik ab Februar 2011: Zur Bestimmung von Staubmenge und Staubinhaltsstoffen des Staubniederschlags wird das in DIN EN 15841 beschriebene Verfahren verwendet. Hierbei wird der Inhalt der Sammelgefäße im Trockenschrank eingeengt, anschließend durch ein Sieb aus Polyamid in tarierte Bechergläser aus Quarzglas überführt und eingedampft. Durch Differenzwägung wird die Staubmenge bestimmt. Der Rückstand wird mit 1% HNO3 in Aufschlussgefäße aus Quarzglas überführt und nach Zugabe von 10 ml Salpetersäure und 1 ml Salzsäure in einem Mikrowellendruckaufschlussautomaten (bis Okt. 2014: SP-D, Fa. CEM; ab Nov. 2014: Multiwave GO, Fa. Anton Paar) bei 200°C aufgeschlossen. Nach Überführen in ein Zentrifugenröhrchen und Verdünnung der Aufschlusslösung unter Zugabe von Rhodium und Lutetium als internem Standard erfolgt die Bestimmung der Elementgehalte mittels Massenspektrometrie (ICP-MS, inductively coupled plasma mass spectrometry) gemäß DIN EN ISO 17294. Die verwendeten ICP-MS-Geräte (bis Juli 2018: Agilent 7500 cx; ab Aug. 2018: Agilent 7800) sind mit heliumbetriebenen Kollisionszellen zur Minimierung polyatomarer Interferenzen ausgestattet. Die Kalibration erfolgte arbeitstäglich mit Hilfe von Multielementlösungen und wurde mit Hilfe von Kontrollstandards überprüft.
- Durch die Änderung des Aufschlussverfahrens ab Februar 2011 ergeben sich für manche Elemente Änderungen in der Wiederfindung (z.B. Zinn). Hier ist die Vergleichbarkeit der Jahresmittelwerte gegenüber den Vorjahren nur bedingt möglich. Bei den betroffenen Elementen findet sich ein Hinweis in der Grafik.
- Wegen analytischer Unsicherheiten k\u00f6nnen f\u00fcr Chrom und Nickel keine Jahresmittelwerte f\u00fcr 2011 angegeben werden.

Berechnung und Darstellung

- Ausreißer für die ländlich geprägten DBS werden aus dem Datenkollektiv entfernt, wenn ihr Wert größer ist als der Jahresmittelwert + 2 · Standardabweichung des logarithmierten Datensatzes und die Ausreißer expertengestützt plausibilisiert wurden. Die Ermittlung der Ausreißer für die städtischen Stationen erfolgt expertengestützt.
- Der Jahresmittelwert für Deposition von Staub und Staubinhaltsstoffe wird für jede der immissionsökologischen DBS (Abb. 1) aus den Depositionen der dreizehn 28-tägigen Expositionszeiträume berechnet. Für das erste und letzte Intervall eines Jahres, in dem jeweils über den Jahreswechsel gemessen wird, wird die Deposition im Messzeitraum taggenau gewichtet und zwischen Dezember und Januar aufgeteilt.
- Die arithmetischen Mittelwerte für den ländlichen Hintergrund sowie zugehörige Standardabweichungen werden jeweils aus den Jahresmittelwerten von bis zu sechs vorwiegend ländlich geprägten DBS berechnet (Tab. 1) und für einen Messzeitraum von bis zu 20 Jahren in den nachfolgenden Abbildungen dargestellt. Neben den Jahresmittelwerten für den ländlichen Hintergrund wird jeweils der Jahresmittelwert für die DBS Augsburg dargestellt, die sich im Bereich einer städtischen Hintergrundbelastung befindet, sowie für eine verkehrsbelastete städtische DBS.
 - Die verkehrsbelastete DBS München war bis 2013 in Betrieb und wurde 2017 durch die DBS Ansbach ersetzt. Die Jahresmittelwerte dieser beiden DBS sind in einer Datenreihe zusammengefasst. Die an der DBS Ansbach gemessenen Werte sind für einige Elemente und den Staubniederschlag deutlich höher als die an der DBS München gemessen Werte. Dies liegt vermutlich an den jeweiligen Charakteristika der Standorte: Die DBS München befand sich in einem Park ca. 25 m von einer vielbefahrenen Hauptstraße entfernt. Straße und Station waren durch einen mehrreihigen Gehölzstreifen getrennt. Die Bäume des Parks in unmittelbarer Nähe der Station wurden zunehmend größer und behinderten die freie Anströmbarkeit. Daher musste die Station 2013 aufgegeben werden. Die DBS Ansbach befindet sich direkt (Entfernung 2m) an einer vielbefahrenen Straßenkreuzung (Stationsbeschreibung Dauerbeobachtungsstation Ansbach (bayern.de)).
- Wenn signifikante Trends für die Jahresmittelwerte an den ländlichen DBS im aktuellen 10-Jahres-Zeitraum vorliegen sind sie in den Diagrammen dargestellt.

- Grenzwerte für Schadstoffdepositionen sind in der Technischen Anleitung zur Reinhaltung der Luft TA Luft
 (Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz i. d. F. v. 24.07.2002) enthalten und sollen den Schutz vor schädlichen Umwelteinwirkungen durch die Deposition sicherstellen. Für die
 Elemente, zu denen in der TA Luft Immissionswerte vorliegen, ist der Immissionswert bei der Darstellung des
 jeweiligen Elements in der Abbildungsunterschrift dokumentiert.
 - Daneben sind ggf. die zulässigen jährlichen Frachten über alle Wirkungspfade nach BBodSchV (Bundes-Bodenschutz- und Altlastenverordnung i. d. F. v. 27.9.2017, Anhang 2, Ziffer 5) angegeben.
 - An allen ländlichen geprägten immissionsökologischen Dauerbeobachtungsstationen (DBS) sowie an der städtischen Hintergrundstation Augsburg sind die Immissionswerte eingehalten. Werte unterhalb der analytischen Bestimmungsgrenze werden mit der halben Bestimmungsgrenze angesetzt.

Jahresmittelwerte der atmosphärischen Deposition

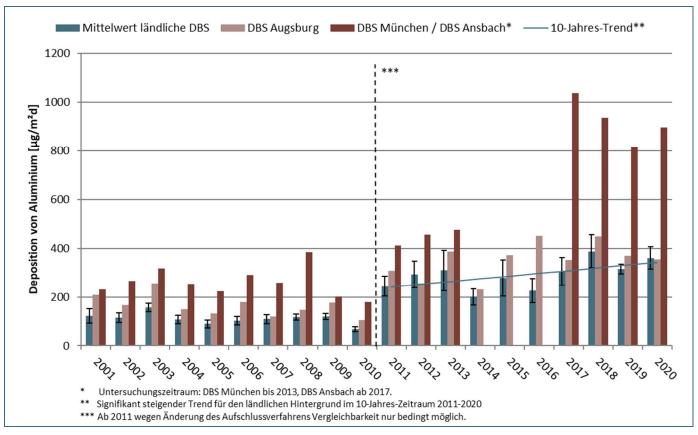


Abb. 2: Jahresmittelwerte der Aluminium-Deposition im ländlichen Hintergrund und an den städtischen DBS.

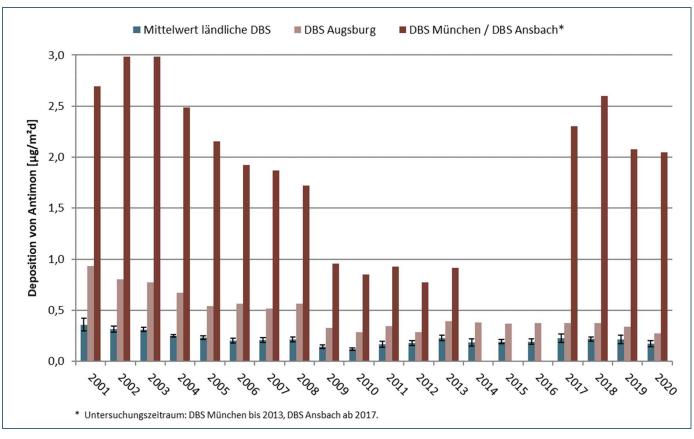


Abb. 3: Jahresmittelwerte der Antimon-Deposition im ländlichen Hintergrund und an den städtischen DBS.

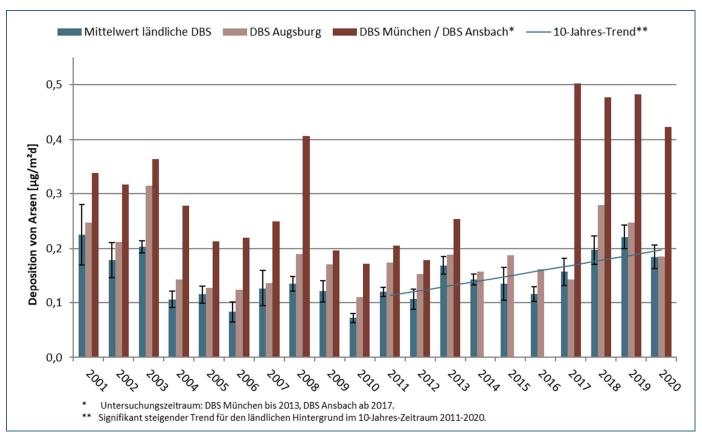


Abb. 4: Jahresmittelwerte der Arsen-Deposition im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Arsen im Staubniederschlag nach TA Luft: 4 μg/m²d.

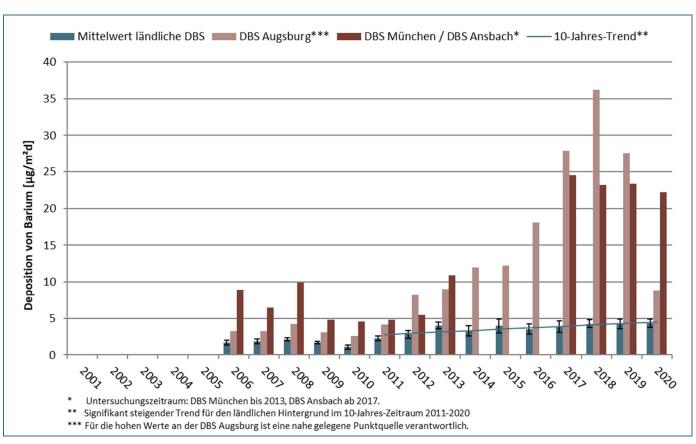


Abb. 5: Jahresmittelwerte der Barium-Deposition im ländlichen Hintergrund und an den städtischen DBS.

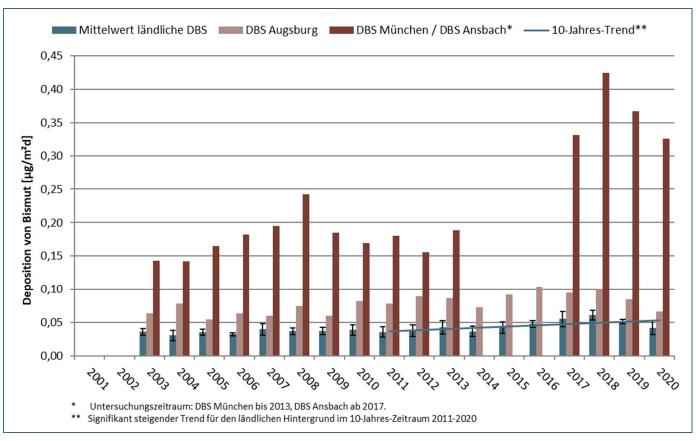


Abb. 6: Jahresmittelwerte der Bismut-Deposition im ländlichen Hintergrund, an den städtischen DBS.

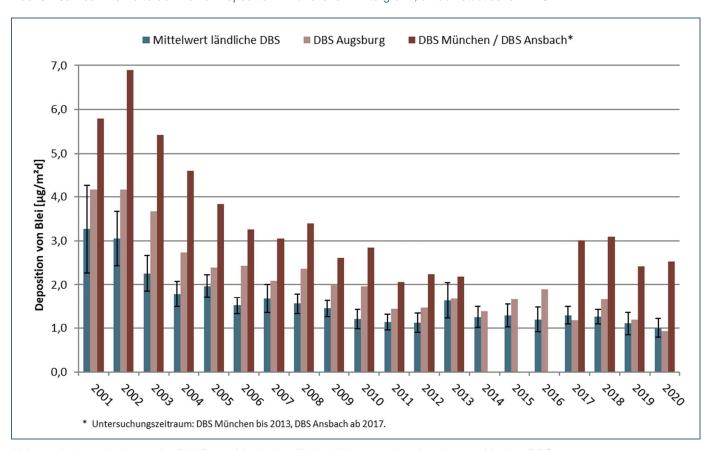


Abb. 7: Jahresmittelwerte der Blei-Deposition im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Bleideposition nach TA Luft: 100 μg/m²d; zulässige Fracht nach BBodSchV: 110 μg/m²d.

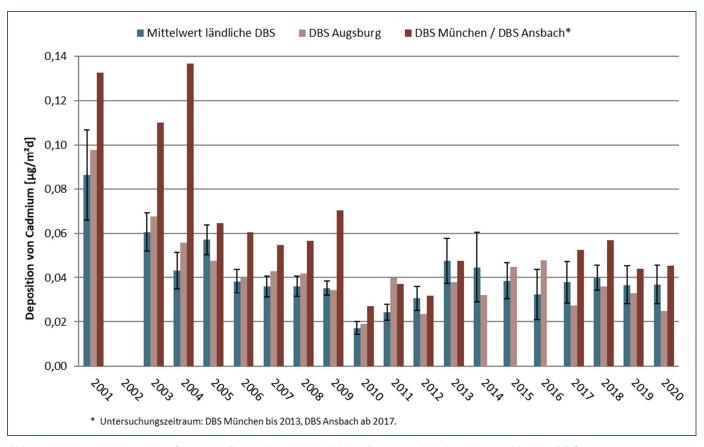


Abb. 8: Jahresmittelwerte der Cadmium-Deposition im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Cadmiumdeposition nach TA Luft: 2 μg/m²d; zulässige Fracht nach BBodSchV: 1,6 μg/m²d.

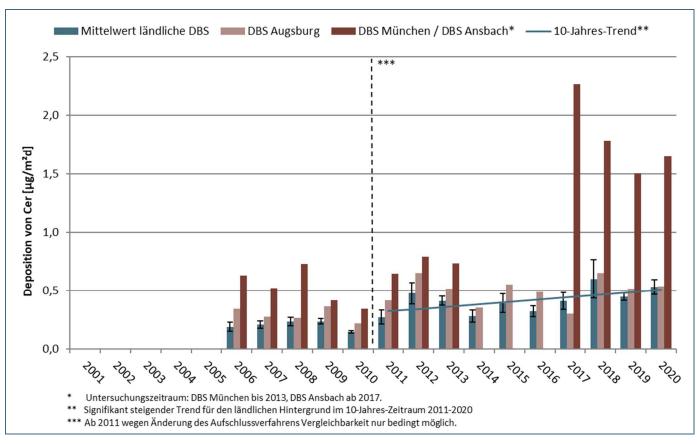


Abb. 9: Jahresmittelwerte der Cer-Deposition im ländlichen Hintergrund und an den städtischen DBS.

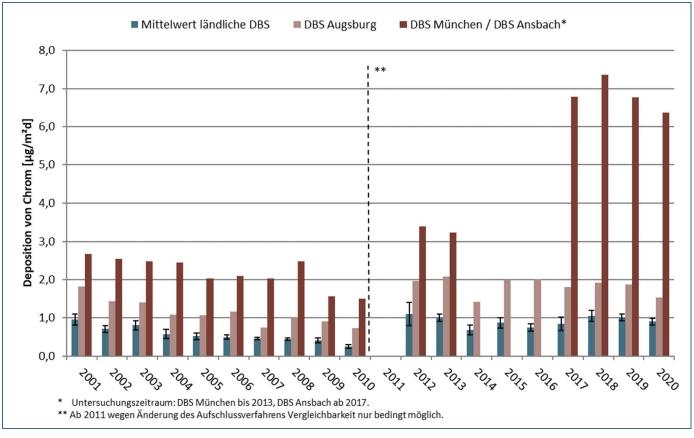


Abb. 10: Jahresmittelwerte der Chrom-Deposition im ländlichen Hintergrund und an den städtischen DBS. Zulässige Fracht nach BBodSchV: 82 μg/m²d.

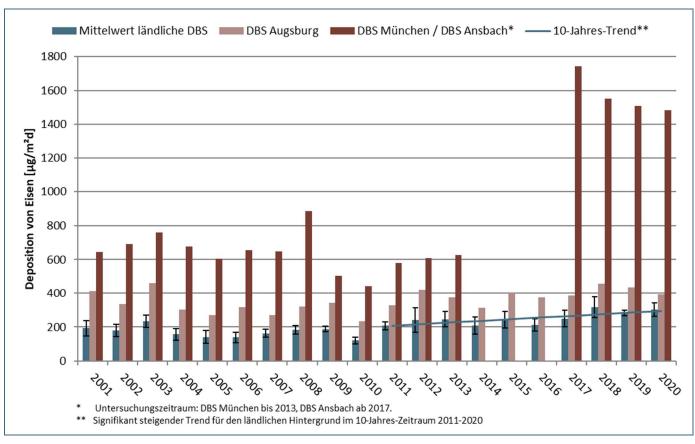


Abb. 11: Jahresmittelwerte der Eisen-Deposition im ländlichen Hintergrund und an den städtischen DBS.

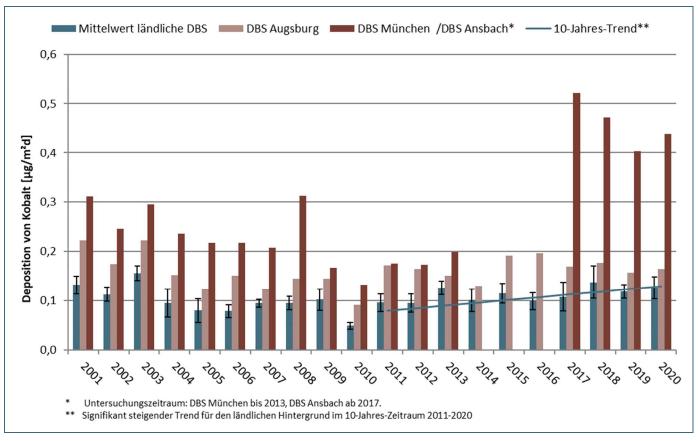


Abb. 12: Jahresmittelwerte der Kobalt-Deposition im ländlichen Hintergrund und an den städtischen DBS.

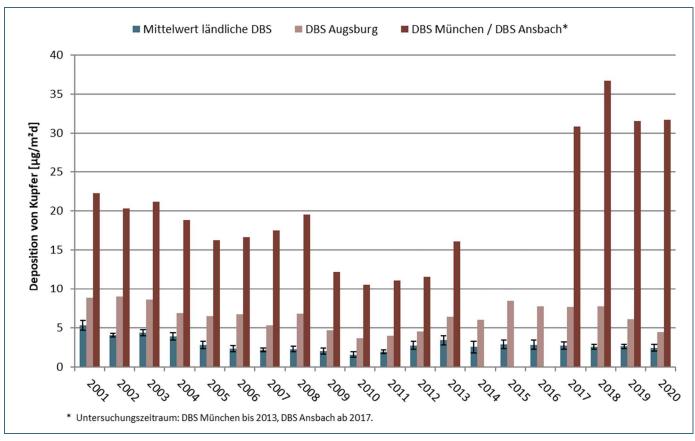


Abb. 13: Jahresmittelwerte der Kupfer-Deposition im ländlichen Hintergrund und an den städtischen DBS. Zulässige Fracht nach BBodSchV: 99 μg/m²d.

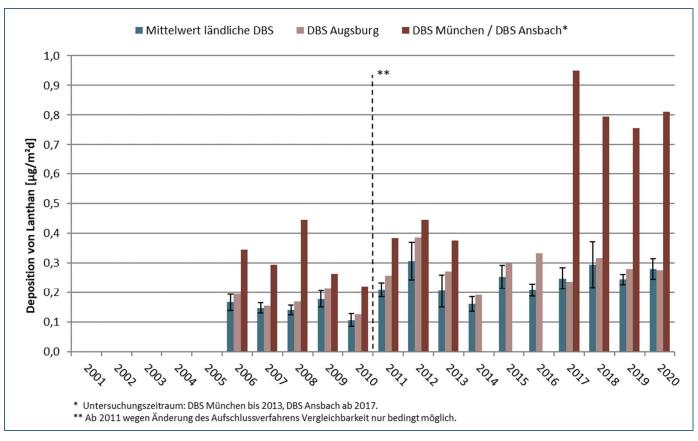


Abb. 14: Jahresmittelwerte der Lanthan-Deposition im ländlichen Hintergrund und an den städtischen DBS.

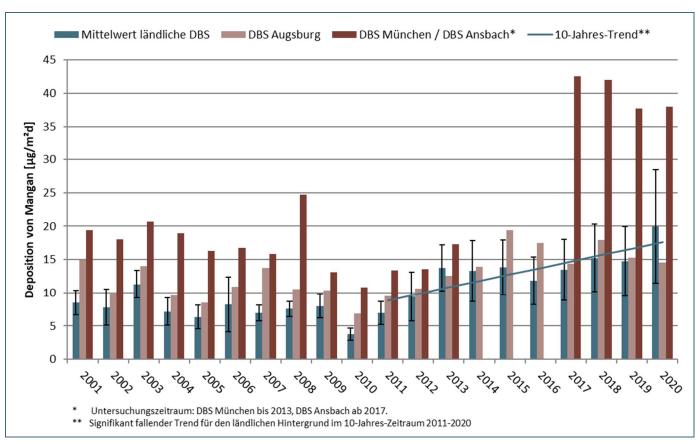


Abb. 15: Jahresmittelwerte der Mangan-Deposition im ländlichen Hintergrund und an den städtischen DBS.

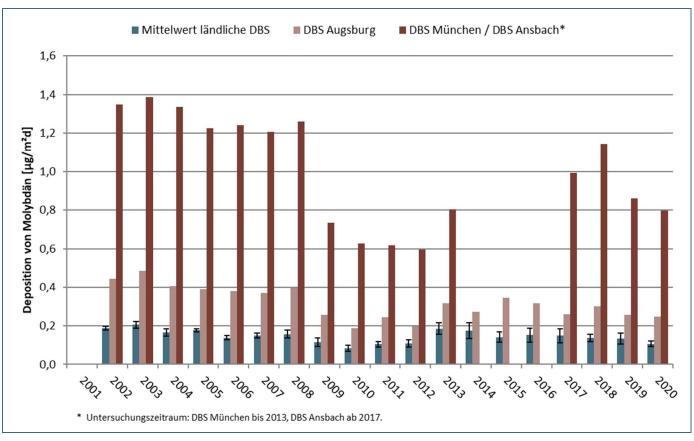


Abb. 16: Jahresmittelwerte der Molybdän-Deposition im ländlichen Hintergrund und an den städtischen DBS.

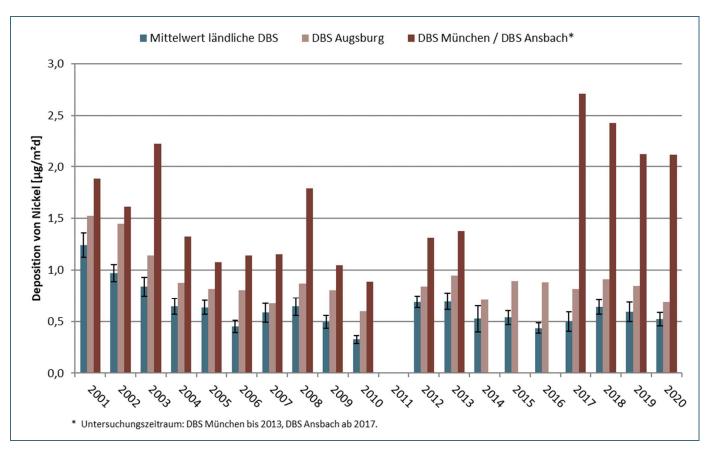


Abb. 17: Jahresmittelwerte der Nickel-Deposition im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Nickeldeposition nach TA Luft: 15 μg/m²d; zulässige Fracht nach BBodSchV: 27,4 μg/m²d..

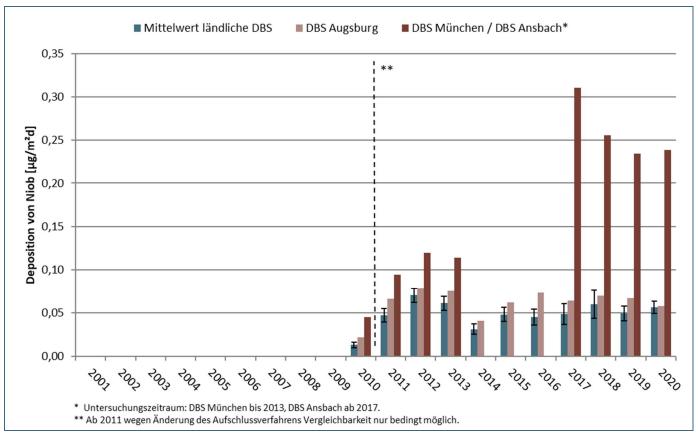


Abb. 18: Jahresmittelwerte der Niob-Deposition im ländlichen Hintergrund und an den städtischen DBS.

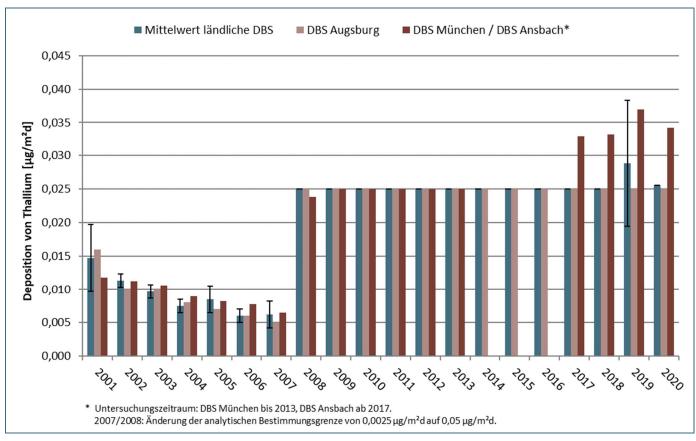


Abb. 19: Jahresmittelwerte der Thallium-Deposition im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Thallium im Staubniederschlag nach TA Luft: 2 μg/m²d.

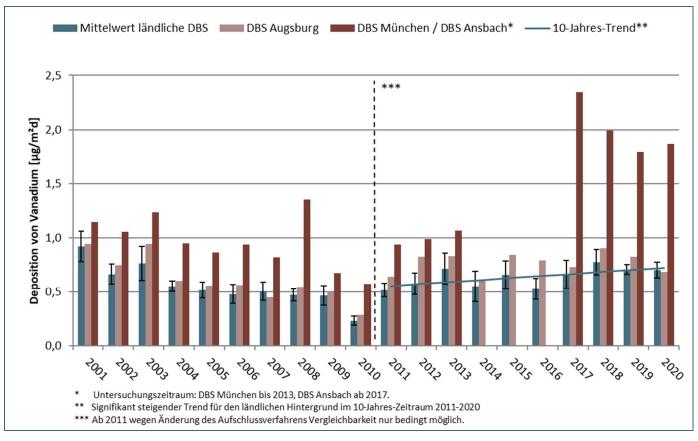


Abb. 20: Jahresmittelwerte der Vanadium-Deposition im ländlichen Hintergrund und an den städtischen DBS.

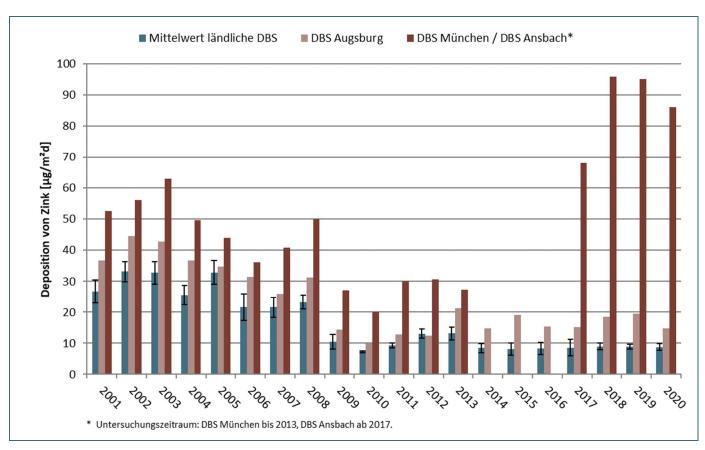


Abb. 21: Jahresmittelwerte der Zink-Deposition im ländlichen Hintergrund und an den städtischen DBS. Zulässige Fracht nach BBodSchV: 329 μg/m²d.

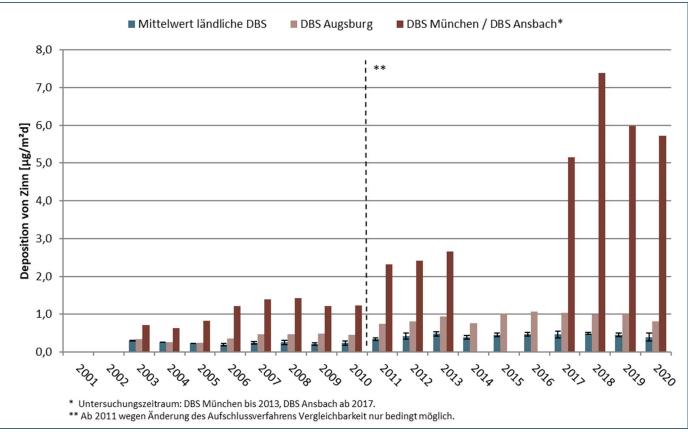


Abb. 22: Jahresmittelwerte der Zinn-Deposition im ländlichen Hintergrund und an den städtischen DBS.

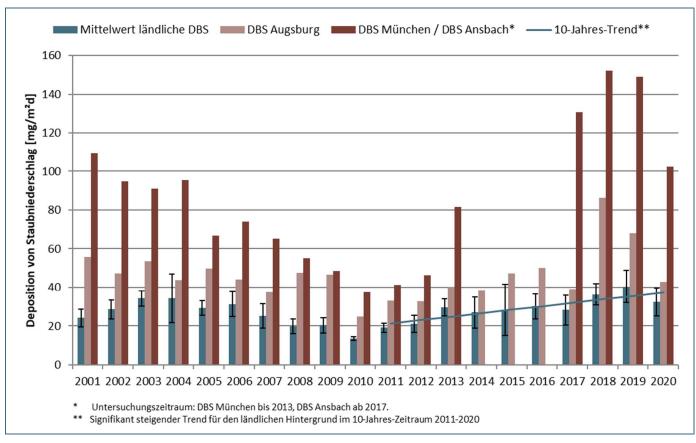


Abb. 23: Jahresmittelwerte Gesamtstaubniederschlag im ländlichen Hintergrund und an den städtischen DBS. Immissionswert für Staubniederschlag zum Schutz vor Belästigungen oder erheblichen Nachteilen nach TA Luft: 350 mg/m²d.

Tab. 1: Jahresmittelwerte der Deposition im ländlichen Hintergrund [µg/m²d] 2001 – 2020 (MW Land = Jahresmittelwert der ländlichen geprägten DBS, Stabw = Standardabweichung, MUC / ANS = München (bis 2013) und Ansbach (ab 2017), AUG = Augsburg, BID = Bidingen, EIN = Eining, GRA = Grassau, KUL = Kulmbach, MOE = Möhrendorf, SCY = Scheyern, WBB = Weibersbrunn, WSS = Weißenstadt)

	DBS	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Aluminium	MUC / ANS	232	265	319	254	224	289	257	385	200	180	412	457	475				1038	935	814	897
	AUG	209	166	257	149	131	178	120	148	176	105	307	256	388	231	373	450	352	449	370	355
	BID	134	98	176	100	71	107	116	125	113	61	290	259	406	195	317	220	250	361	313	361
	EIN	161	135	166	104	70	85	105	117	119	59	242	279	306	152	314	194	272	477	326	332
	GRA	73	86	165	108	98	82	136	91	137	76	288	400	163	256	380	300	366	307	325	440
	KUL		137	161	92	112	129	85	126	106	65	244	279	337	207	266	254	388	462	276	348
	MOE								124	131	63	200	253	285	194	200	231	273	371	329	308
	SCY	136	113	126	142	95	95	119													
	WBB	106	116	147	99	85	116	95	120	111	85	197	288	358	201	189	154	281	341	324	374
	wss	128																			
	MW Land	123	114	157	107	89	102	109	117	119	68	244	293	309	201	278	226	305	387	315	360
	Stabw	30	20	18	18	17	18	18	13	12	10	41	54	83	33	74	50	57	68	20	45
Antimon	MUC / ANS	2,70	2,98	2,98	2,49	2,15	1,92	1,87	1,72	0,96	0,85	0,93	0,78	0,91				2,31	2,60	2,08	2,04
	AUG	0,93	0,81	0,77	0,67	0,54	0,56	0,51	0,56	0,33	0,28	0,34	0,29	0,39	0,38	0,37	0,37	0,37	0,37	0,34	0,27
	BID	0,33	0,31	0,29	0,25	0,22	0,17	0,19	0,18	0,11	0,11	0,13	0,14	0,25	0,23	0,20	0,18	0,19	0,22	0,21	0,15
	EIN	0,32	0,26	0,32	0,26	0,22	0,22	0,24	0,20	0,14	0,10	0,14	0,19	0,20	0,14	0,17	0,15	0,17	0,20	0,18	0,14
	GRA	0,40	0,35	0,33	0,25	0,22	0,23	0,22	0,23	0,15	0,13	0,20	0,21	0,20	0,23	0,22	0,23	0,26	0,25	0,27	0,21
	KUL		0,33	0,33	0,24	0,26	0,21	0,20	0,22	0,15	0,12	0,19	0,17	0,22	0,17	0,17	0,19	0,21	0,20	0,17	0,16
	MOE								0,25	0,17	0,14	0,17	0,17	0,22	0,17	0,18	0,20	0,22	0,21	0,22	0,18
	SCY	0,28	0,31	0,29	0,24	0,24	0,18	0,19													
	WBB	0,46	0,32	0,31	0,26	0,25	0,20	0,21	0,21	0,14	0,12	0,17	0,20	0,26	0,18	0,21	0,22	0,28	0,23	0,25	0,19
	wss	0,36																			
	MW Land	0,36	0,31	0,31	0,25	0,23	0,20	0,21	0,21	0,14	0,12	0,17	0,18	0,23	0,19	0,19	0,19	0,22	0,22	0,21	0,17
	Stabw	0,06	0,03	0,02	0,01	0,02	0,02	0,02	0,03	0,02	0,01	0,03	0,02	0,03	0,04	0,02	0,03	0,04	0,02	0,04	0,03
Arsen	MUC / ANS	0,34	0,32	0,36	0,28	0,21	0,22	0,25	0,41	0,20	0,17	0,20	0,18	0,25				0,50	0,48	0,48	0,42
Arsen	•														0.16	0.10	0.16	-	_		
	AUG	0,25	0,21	0,31	0,14	0,13	0,12	0,14	0,19	0,17	0,11	0,17	0,15	0,19	0,16	0,19	0,16	0,14	0,28	0,25	0,19
	BID	0,13	0,14	0,20	0,10	0,12	0,06	0,11	0,11	0,14	0,06	0,12	0,11	0,17	0,16	0,11	0,10	0,14	0,16	0,22	0,16
	EIN	0,25	0,19	0,21	0,11	0,09	0,07	0,17	0,14	0,12	0,08	0,12	0,12	0,16	0,14	0,16	0,11	0,14	0,24	0,24	0,18
	GRA	0,20	0,14	0,22	0,10	0,12	0,08	0,10	0,15	0,15	0,07	0,11	0,13	0,19	0,15	0,18	0,13	0,18	0,21	0,23	0,22
	KUL		0,21	0,19	0,09	0,13	0,11	0,10	0,13	0,10	0,06	0,11	0,11	0,15	0,14	0,12	0,13	0,16	0,21	0,18	0,18
	МОЕ								0,13	0,12	0,08	0,13	0,08	0,15	0,14	0,11	0,10	0,14	0,19	0,21	0,16
	SCY	0,23	0,21	0,19	0,13	0,12	0,09	0,12													
	WBB	0,26	0,18	0,21	0,11	0,11	0,10	0,17	0,14	0,10	0,08	0,12	0,09	0,19	0,14	0,13	0,13	0,19	0,18	0,24	0,20
	wss	0,28																			
	MW Land	0,23	0,18	0,20	0,11	0,12	0,08	0,13	0,14	0,12	0,07	0,12	0,11	0,17	0,14	0,14	0,12	0,16	0,20	0,22	0,18
	Stabw	0,06	0,03	0,01	0,02	0,02	0,02	0,03	0,01	0,02	0,01	0,01	0,02	0,02	0,01	0,03	0,01	0,03	0,03	0,02	0,02
Barium	MUC / ANS						9,0	6,4	9,9	4,8	4,5	4,9	5,4	11,0				24,5	23,2	23,3	22,2
	AUG						3,3	3,2	4,2	3,1	2,6	4,2	8,3	9,0	12,0	12,2	18,1	27,9	36,2	27,5	8,9
	BID						1,4	1,4	1,8	1,9	0,7	2,3	2,6	3,8	2,7	3,3	3,0	3,0	3,8	3,4	3,7
	EIN						1,6	2,3	2,1	1,7	0,9	1,8	2,7	3,8	2,3	3,2	2,6	2,9	4,3	3,8	4,3
	GRA						1,5	2,0	2,2	1,8	1,1	2,4	3,7	3,3	4,2	5,7	4,5	_,-	4,1	4,3	4,8
	KUL						1,7	1,8	2,3	1,5	1,2	2,8	3,3	4,4	3,6	4,0	3,6	4,8	5,3	5,2	5,2
	MOE						-,-	_,0	2,4	1,9	1,3	2,2	2,4	4,4	3,2	4,4	4,3	4,1	4,1	4,4	3,8
	SCY						2,2	1,9	-,.	2,3	1,5	-,-	-,.	.,.	5,2	.,.	.,5	-,,2	-,,=	.,.	5,0
	WBB						1,8	1,6	2,1	1,6	1,2	2,0	2,2	4,5	3,7	3,4	3,4	3,9	4,0	4,3	4,3
	WSS						1,0	1,0	2,1	1,0	1,2	2,0	2,2	4,3	3,7	3,4	3,4	3,3	4,0	4,3	4,3
	MW Land						1,7	1,8	2,1	1,7	1,1	2,3	2,8	4,0	3,3	4,0	3,5	3,9	4,3	4,2	4,3
							0,3	0,3	0,2	0,2	0,3	-	_	0,5	0,7	_	-	0,8	0,5		0,6
-	Stabw			04:-	04:-	04			_			0,4	0,6		υ,/	1,0	0,7			0,6	
Bismut	MUC / ANS			0,143	0,142	0,165	0,182	0,195	0,242	0,185	0,170	0,180	0,156	0,188				0,332	0,424	0,367	0,326
	AUG			0,064	0,078	0,054	0,064	0,060	0,075	0,060	0,082	0,078	0,089	0,086	0,073	0,092	0,104	0,095	0,101	0,084	0,067
	BID			0,031	0,029	0,033	0,034	0,044	0,033	0,041	0,036	0,044	0,030	0,056	0,046	0,047	0,042	0,064	0,067	0,050	0,037
	EIN			0,032	0,025	0,033	0,034	0,036	0,034	0,029	0,025	0,024	0,031	0,036	0,026	0,039	0,037	0,037	0,058	0,047	0,037
	GRA			0,048	0,029	0,041	0,030	0,055	0,052	0,051	0,051	0,051	0,056	0,049	0,050	0,057	0,084	0,082	0,087	0,062	0,061
	KUL			0,029	0,024	0,028	0,031	0,026	0,026	0,030	0,036	0,028	0,027	0,030	0,029	0,030	0,038	0,045	0,054	0,045	0,032
	MOE								0,035	0,031	0,040	0,031	0,032	0,040	0,031	0,032	0,038	0,043	0,046	0,051	0,047
	SCY			0,035	0,032	0,041	0,031	0,032													
	WBB			0,042	0,044	0,037	0,035	0,047	0,040	0,039	0,045	0,037	0,049	0,047	0,038	0,050	0,049	0,059	0,053	0,052	0,040
	wss																				
	MW Land			0,036	0,031	0,035	0,032	0,040	0,037	0,037	0,039	0,036	0,038	0,043	0,037	0,042	0,048	0,055	0,061	0,051	0,042
	Stabw			0,005	0,008	0,005	0,002	0,009	0,005	0,005	0,008	0,008	0,008	0,010	0,008	0,009	0,005	0,011	0,007	0,003	0,011

	DBS	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Blei	MUC / ANS	5,8	6,9	5,4	4,6	3,8	3,3	3,1	3,4	2,6	2,9	2,1	2,2	2,2				3,0	3,1	2,4	2,5
	AUG	4,2	4,2	3,7	2,7	2,4	2,4	2,1	2,4	2,0	2,0	1,4	1,5	1,7	1,4	1,7	1,9	1,2	1,7	1,2	0,9
	BID	2,5	2,0	2,0	1,6	2,0	1,4	1,5	1,4	1,7	1,2	1,1	1,0	1,6	1,4	1,2	1,3	1,1	1,2	1,0	0,8
	EIN	2,3	2,8	1,8	1,3	2,1	1,4	1,8	1,3	1,3	1,0	1,0	1,0	1,1	0,9	1,0	0,8	0,9	1,1	0,8	0,8
	GRA KUL	3,5	3,4 3,4	2,9 2,1	1,9 1,7	2,0 1,6	1,6 1,7	2,1 1,5	1,6 1,7	1,7	1,5 1,1	1,5 1,0	1,2 1,1	1,8 1,5	1,3	1,6 1,3	1,5	1,3 1,2	1,3 1,3	1,3 0,9	1,2
	MOE		3,4	2,1	1,/	1,0	1,7	1,3	1,7	1,3	1,0	1,0	1,0	1,5	1,2	1,0	1,1	1,1	1,2	1,1	1,0
	SCY	2,6	3,1	2,1	2,0	2,3	1,3	1,3	2,5	2,0	2,0	2,0	2,0	2,0	-,-	2,0	-,-	-,-	-,-		1,0
	WBB	5,0	3,7	2,6	2,1	1,9	1,7	1,9	1,9	1,6	1,4	1,2	1,6	2,3	1,6	1,6	1,5	1,5	1,6	1,5	1,3
	wss	3,7																			
	MW Land	3,3	3,1	2,3	1,8	2,0	1,5	1,7	1,6	1,5	1,2	1,1	1,1	1,6	1,3	1,3	1,2	1,3	1,3	1,1	1,0
	Stabw	1,0	0,6	0,4	0,3	0,3	0,2	0,3	0,2	0,2	0,2	0,2	0,2	0,4	0,2	0,3	0,3	0,2	0,2	0,3	0,2
Cadmium	MUC / ANS	0,133		0,110	0,137	0,065	0,060	0,055	0,057	0,070	0,027	0,037	0,032	0,048	0.000	2.245	0.040	0,053	0,057	0,044	0,045
	AUG BID	0,098		0,068	0,056	0,047	0,040	0,043	0,042	0,034	0,019	0,040	0,023	0,038	0,032	0,045	0,048	0,027	0,036	0,033	0,025
	EIN	0,074		0,063	0,042	0,059	0,038	0,044	0,033	0,036	0,017	0,019	0,029	0,032	0,023	0,033	0,022	0,024	0,036	0,031	0,032
	GRA	0,080		0,064	0,052	0,050	0,045	0,033	0,041	0,038	0,014	0,029	0,032	0,051	0,071	0,046	0,032	0,041	0,043	0,038	0,047
	KUL			0,054	0,039	0,069	0,040	0,036	0,039	0,039	0,021	0,027	0,033	0,055	0,049	0,051	0,045	0,051	0,047	0,051	0,047
	MOE								0,035	0,030	0,021	0,024	0,034	0,047	0,039	0,032	0,020	0,034	0,033	0,032	0,030
	SCY	0,077		0,053	0,053	0,056	0,036	0,033													
	WBB	0,125		0,075	0,041	0,055	0,041	0,039	0,040	0,033	0,016	0,025	0,035	0,053	0,040	0,034	0,047	0,044	0,044	0,040	0,037
	WSS MW Land	0,093		0,061	0,043	0,057	0,038	0,036	0,036	0,035	0,017	0,024	0,031	0,048	0,045	0,038	0,032	0,038	0,040	0,037	0,037
	Stabw	0,086		0,001	0,043	0,037	0,038	0,036	0,036	0,003	0,017	0,024	0,031	0,048	0,045	0,038	0,032	0,038	0,040	0,037	0,037
Cer	MUC / ANS	0,022		5,555	-,	-,	0,63	0,52	0,73	0,42	0,35	0,64	0,79	0,74	-,	1,000	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,27	1,78	1,50	1,65
	AUG						0,34	0,28	0,27	0,36	0,22	0,42	0,65	0,52	0,35	0,55	0,49	0,30	0,65	0,51	0,54
	BID						0,18	0,20	0,20	0,25	0,15	0,18	0,46	0,46	0,24	0,40	0,28	0,34	0,49	0,41	0,49
	EIN						0,21	0,21	0,25	0,23	0,15	0,34	0,46	0,40	0,22	0,43	0,27	0,36	0,70	0,47	0,50
	GRA						0,15	0,26	0,18	0,21	0,15	0,26	0,57	0,38	0,36	0,51	0,38	0,45	0,42	0,43	0,57
	KUL						0,26	0,18	0,25	0,22	0,13	0,34	0,50	0,44	0,32	0,42	0,36	0,54	0,87	0,42	0,63
	MOE SCY						0,15	0,23	0,25	0,27	0,15	0,27	0,32	0,36	0,27	0,32	0,36	0,39	0,60	0,49	0,46
	WBB						0,20	0,19	0,28	0,26	0,15	0,25	0,56	0,44	0,27	0,29	0,32	0,39	0,52	0,46	0,53
	WSS																				
	MW Land						0,19	0,21	0,24	0,24	0,15	0,27	0,48	0,41	0,28	0,39	0,33	0,41	0,60	0,45	0,53
	Stabw						0,04	0,03	0,04	0,02	0,01	0,06	0,09	0,04	0,05	0,08	0,05	0,07	0,16	0,03	0,06
Chrom	MUC / ANS	2,68	2,55	2,48	2,46	2,03	2,11	2,04	2,48	1,56	1,49	3,15	3,39	3,23				6,78	7,36	6,76	6,38
	AUG BID	1,81 0,73	1,43 0,61	1,41 0,67	1,09 0,41	1,07 0,54	1,17 0,53	0,75	1,02 0,41	0,91	0,73	0,00	1,98 0,81	2,09 0,97	1,41	2,01 0,84	2,02	1,79 0,65	1,93 0,94	1,88	1,52 0,81
	EIN	0,73	0,01	0,07	0,50	0,34	0,55	0,46	0,41	0,42	0,23	0,00	0,81	0,97	0,62 0,55	0,85	0,66	0,03	1,25	0,93	0,81
	GRA	0,81	0,80	0,86	0,70	0,47	0,41	0,50	0,47	0,47	0,25	0,00	1,57	1,13	0,92	1,13	0,90	0,98	0,94	1,00	0,95
	KUL		0,81	0,97	0,60	0,58	0,53	0,42	0,43	0,33	0,21	0,00	1,00	1,04	0,62	0,87	0,74	0,97	1,20	1,02	0,87
	MOE								0,46	0,41	0,27	0,00	0,96	0,87	0,66	0,76	0,71	0,68	0,98	1,01	0,80
	SCY	1,05	0,62	0,88	0,72	0,65	0,45	0,50													
	WBB	1,03	0,68	0,69	0,54	0,48	0,52	0,46	0,49	0,50	0,33	0,00	1,35	1,04	0,71	0,78	0,80	1,05	0,97	1,16	0,98
	MW Land	1,09 0,95	0,71	0,81	0,58	0.52	0,50	0.46	0.45	0,41	0,25	0,00	1,10	0,99	0,68	0,87	0,74	0,84	1.05	1,01	0,90
	Stabw	0,93	0,71	0,81	0,38	0,52	0,30	0,46	0,45	0,41	0,23	0,00	0,30	0,33	0,08	0,87	0,74	0,84	1,05 0,14	0,08	0,90
Eisen	MUC / ANS	644	692	759	675	605	656	650	886	503	441	579	608	626	0,15	0,13	0,10	1742	1553	1510	1485
	AUG	415	334	461	301	269	316	271	322	341	235	329	421	375	315	404	374	385	456	434	391
	BID	176	134	222	132	102	131	158	176	189	108	225	170	284	191	259	188	197	278	257	269
	EIN	213	171	290	139	99	126	154	170	169	94	195	246	232	156	249	165	208	360	277	278
	GRA	128	174	238	167	154 196	130	205	148	215	142	239	358	161	289	320	264	295	263	305	358 342
	KUL MOE		230	253	137	190	193	143	219 204	175 194	121 121	224 186	287 186	281 247	240 160	254 190	245	319 227	419 298	278 299	268
	SCY	262	209	196	222	159	105	171	204	134	121	100	100	4-11	100	150	200	221	230	233	200
	WBB	171	161	196	147	142	151	145	193	189	143	181	205	272	217	193	207	252	282	282	298
	wss	208																			
	MW Land	193	180	233	158	142	139	163	185	189	121	208	242	246	209	244	213	250	317	283	302
	Stabw	46	35	36	34	37	30	23	25	16	19	24	71	46	51	48	36	49	60	17	39
Kobalt	MUC / ANS	0,31	0,25	0,30	0,24	0,22	0,22	0,21	0,31	0,17	0,13	0,18	0,17	0,20	0.42	0.10	0.22	0,52	0,47	0,40	0,44
	AUG BID	0,22	0,17	0,22	0,15 0,07	0,12	0,15 0,07	0,12	0,14	0,14	0,09	0,17	0,16	0,15	0,13	0,19 0,11	0,20	0,17	0,18 0,12	0,16 0,10	0,16
	EIN	0,15	0,03	0,14	0,07	0,06	0,07	0,09	0,09	0,08	0,04	0,09	0,08	0,14	0,08	0,11	0,08	0,08	0,12	0,10	0,10
	GRA	0,14	0,11	0,18	0,08	0,08	0,06	0,11	0,10	0,14	0,05	0,10	0,13	0,11	0,13	0,13	0,11	0,12	0,11	0,12	0,14
	KUL		0,13	0,16	0,13	0,12	0,09	0,09	0,12	0,09	0,06	0,13	0,10	0,15	0,13	0,15	0,12	0,16	0,20	0,14	0,17
	MOE								0,10	0,10	0,05	0,08	0,09	0,12	0,10	0,10	0,09	0,11	0,14	0,13	0,11
	SCY	0,12	0,13	0,16	0,13	0,09	0,09	0,10													
		0,14	0,11	0,14	0,07	0,07	0,09	0,11	0,08	0,10	0,05	0,08	0,08	0,12	0,10	0,10	0,10	0,10	0,12	0,12	0,12
	WBB	-																			
	wss	0,15	0.11	0.16	0.10	U US	ሀ ባይ	0.10	0.10	0.10	0.05	0.10	0.10	0.12	0.10	0.12	0.10	0.11	0.14	0.12	0.12
		-	0,11	0,16 0,02	0,10	0,08	0,08	0,10 0,01	0,10	0,10	0,05	0,10 0,02	0,10	0,13	0,10	0,12	0,10	0,11	0,14	0,12	0,13

	DBS	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Kupfer	MUC / ANS	22,2	20,3	21,1	18,8	16,3	16,6	17,5	19,6	12,2	10,6	11,1	11,6	16,1	2014	2013	2010	30,9	36,7	31,6	31,7
р.т.	AUG	8,8	9,0	8,6	6,9	6,5	6,7	5,3	6,8	4,7	3,7	4,0	4,6	6,5	6,0	8,4	7,7	7,7	7,7	6,1	4,5
	BID	4,5	4,2	4,3	3,4	2,9	1,6	1,8	1,7	1,7	1,2	1,8	1,9	2,8	2,6	2,0	2,5	2,1	2,2	2,6	1,9
	EIN	6,0	3,8	4,0	3,7	2,9	2,2	2,3	2,1	1,5	1,3	1,6	2,7	3,1	1,6	3,0	2,2	2,3	2,6	2,3	2,3
	GRA	5,2	4,4	4,9	3,6	2,3	2,8	2,4	2,7	2,5	1,9	2,3	3,6	4,5	3,9	3,7	3,8	3,3	3,1	3,0	3,2
	KUL	-,-	4,3	4,3	3,9	3,7	2,6	2,5	2,3	2,3	2,0	2,2	2,6	3,6	2,3	2,7	2,9	3,2	2,5	2,6	2,5
	MOE		.,5	.,5	0,5	5,.	2,0	2,3	2,5	2,2	1,8	2,1	2,8	3,4	2,6	3,0	2,7	2,6	2,5	2,9	2,3
	SCY	5,9	4,0	4,8	4,8	2,5	2,4	2,2	2,3	2,2	1,0	2,1	2,0	3,4	2,0	3,0	2,7	2,0	2,3	2,3	2,3
	WBB	5,7	3,9	4,1	4,0	2,7	2,5	2,1	2,6	2,0	1,4	1,8	3,0	3,2	2,5	2,9	3,0	2,8	2,6	2,6	2,5
	wss	4,7	3,3	-,,-	.,0	-,,	2,3	-,-	2,0	2,0	-,.	1,0	5,0	5,2	2,3	2,3	5,0	2,0	2,0	2,0	2,3
	MW Land	5,3	4,1	4,4	3,9	2,8	2,3	2,2	2,3	2,0	1,6	2,0	2,8	3,4	2,6	2,9	2,9	2,7	2,6	2,7	2,5
	Stabw	0,6	0,2	0,4	0,5	0,5	0,4	0,3	0,4	0,4	0,4	0,3	0,5	0,6	0,8	0,5	0,6	0,5	0,3	0,3	0,4
Lanthan	MUC / ANS	0,0	0,2	0,.	0,5	0,5	0,34	0,29	0,45	0,26	0,22	0,38	0,45	0,38	0,0	0,5	0,0	0,95	0,79	0,76	0,81
201101011	AUG						0,20	0,16	0,17	0,22	0,13	0,26	0,39	0,27	0,19	0,30	0,33	0,24	0,32	0,28	0,28
	BID						0,11	0,12	0,11	0,18	0,07	0,21	0,28	0,23	0,13	0,21	0,15	0,17	0,23	0,21	0,25
	EIN						0,36	0,24	0,20	0,21	0,17	0,28	0,40	0,25	0,18	0,45	0,34	0,39	0,40	0,29	0,31
	GRA						0,09	0,15	0,13	0,22	0,09	0,22	0,33	0,11	0,19	0,27	0,20	0,23	0,20	0,23	0,28
	KUL						0,16	0,11	0,14	0,14	0,09	0,20	0,29	0,23	0,17	0,23	0,20	0,27	0,40	0,23	0,32
\vdash	MOE						5,10	J,11	0,14	0,14	0,09	0,20	0,19	0,23	0,17	0,23	0,19	0,27	0,40	0,26	0,32
\vdash	SCY						0,14	0,15	3,13	5,10	5,05	5,17	3,13	3,13	5,15	5,10	3,13	J,21	3,20	5,20	5,27
	WBB						0,14	0,13	0,15	0,17	0,13	0,17	0,34	0,23	0,15	0,18	0,18	0,22	0,26	0,25	0,28
\vdash	WSS						J,14	5,13	3,13	0,11	0,10	5,17	3,34	3,23	5,15	5,10	3,10	J,22	3,20	5,23	5,20
	MW Land						0,17	0,15	0,14	0,18	0,11	0,21	0,31	0,21	0,16	0,25	0,21	0,25	0,29	0,24	0,28
	Stabw						0,03	0,02	0,02	0,03	0,02	0,02	0,06	0,05	0,02	0,04	0,02	0,04	0,08	0,02	0,03
Mangan	MUC / ANS	10	10	24	10	16									0,02	0,04	0,02				
ivialigali	AUG	19	18	21	19	16	17	16	25	13	11	13	14	17		40	40	43	42	38	38
	BID	15	10	14	10	9	11	14	11	10	7	10	11	13	14	19	18	14	18	15	15
	EIN	6	5	8	5	6	5	6	6	8	2	5	7	8	10	12	8	8	10	8	8
	GRA	10	7	12	7	5	6	7	7	5	3	6	6	11	8	14	8	9	14	15	28
	KUL	8	6	13	6	5	9	6	9	9	4	6	8	15	14	11	14	13	10	9	12
	MOE		12	11	10	9	7	9	8 9	7 10	5	10	12	17	18	21	17 11	18	18 23	17	27
	SCY	15	10	18	16	11	22	15	9	10	5	8	16	15	12	15	11	14	23	20	26
	WBB	10	19 9	12	8	11 7	23 15	7	7	9	3	8	8	16	19	10	13	19	18	19	18
	wss	7	9	12	0	/	13	,	,	3	3	0	0	10	19	10	13	13	10	13	10
	MW Land	8	8	11	7	6	8	7	8	8	4	7	9	14	13	14	12	13	15	15	20
	Stabw	2	3	2	2	2	4	1	1	2	1	2	4	3	5	4	4	5	5	5	9
Molybdän	MUC / ANS		1,35	1,39	1,34	1,23	1,24	1,21	1,26	0,73	0,63	0,62	0,60	0,80	3	-	4	0,99	1,14	0,86	0,80
- 7	AUG		0,44	0,49	0,41	0,39	0,38	0,37	0,40	0,75	0,19	0,24	0,20	0,32	0,27	0,34	0,32	0,26	0,30	0,26	0,25
	BID		0,20	0,19	0,16	0,18	0,12	0,14	0,15	0,10	0,08	0,08	0,10	0,19	0,21	0,12	0,13	0,12	0,13	0,14	0,10
	EIN		0,17	0,19	0,16	0,13	0,12	0,17	0,13	0,08	0,06	0,09	0,09	0,15	0,13	0,12	0,13	0,12	0,13	0,10	0,10
	GRA		0,19	0,24	0,16	0,17	0,14	0,16	0,17	0,14	0,10	0,11	0,13	0,23	0,23	0,18	0,20	0,11	0,17	0,16	0,13
	KUL		0,18	0,20	0,15	0,18	0,14	0,14	0,14	0,11	0,08	0,11	0,09	0,15	0,13	0,13	0,14	0,15	0,12	0,11	0,08
	MOE		3,20	3,20	3,23	2,20	2,27	2,27	0,17	0,11	0,09	0,11	0,13	0,13	0,15	0,13	0,14	0,13	0,12	0,11	0,10
	SCY		0,19	0,20	0,18	0,19	0,13	0,15	.,_,	.,==	.,	-,	.,_5	.,_0	.,=5	.,= .	.,_5	.,_5	.,	.,_0	.,
	WBB		0,19	0,21	0,20	0,17	0,15	0,16	0,18	0,12	0,11	0,12	0,12	0,21	0,18	0,17	0,19	0,19	0,15	0,17	0,12
	wss			Ė		<u> </u>															
	MW Land		0,19	0,21	0,17	0,18	0,14	0,15	0,16	0,11	0,08	0,10	0,11	0,18	0,17	0,14	0,15	0,15	0,14	0,13	0,11
	Stabw		0,01	0,02	0,02	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,03	0,04	0,03	0,04	0,04	0,02	0,03	0,01
Nickel	MUC / ANS	1,88	1,61	2,23	1,33	1,07	1,14	1,15	1,79	1,05	0,89	,,	1,31	1,38	.,-	,,,,,,	.,.	2,71	2,43	2,13	2,12
	AUG	1,52	1,45	1,14	0,88	0,81	0,81	0,67	0,87	0,81	0,60	0,00	0,84	0,95	0,71	0,90	0,88	0,82	0,91	0,85	0,69
	BID	1,15	0,83	0,77	0,55	0,66	0,41	0,50	0,55	0,47	0,30	0,00	0,71	0,00	0,51	0,61	0,42	0,38	0,56	0,51	0,42
	EIN	1,15	0,99	1,01	0,61	0,54	0,44	0,73	0,56	0,39	0,28	0,00	0,64	0,59	0,36	0,55	0,38	0,40	0,65	0,46	0,53
	GRA	1,18	0,95	0,79	0,69	0,71	0,49	0,60	0,71	0,57	0,31	0,00	0,73	0,67	0,74	0,59	0,48	0,55	0,58	0,59	0,51
	KUL		0,93	0,89	0,60	0,69	0,54	0,59	0,76	0,54	0,35	0,00	0,68	0,78	0,50	0,53	0,47	0,62	0,76	0,64	0,60
	MOE								0,68	0,51	0,33	0,00	0,61	0,76	0,47	0,41	0,38	0,48	0,65	0,62	0,51
	SCY	1,21	1,04	0,77	0,77	0,58	0,38	0,48													
	WBB	1,45	1,06	0,80	0,66	0,64	0,47	0,62	0,60	0,49	0,38	0,00	0,76	0,68	0,59	0,54	0,49	0,57	0,63	0,72	0,57
	wss	1,31																			
	MW Land	1,24	0,97	0,84	0,65	0,64	0,45	0,59	0,64	0,50	0,33	0,00	0,69	0,70	0,53	0,54	0,44	0,50	0,64	0,59	0,52
	Stabw	0,12	0,08	0,09	0,08	0,07	0,06	0,09	0,09	0,06	0,04	0,00	0,06	0,08	0,13	0,07	0,05	0,10	0,07	0,09	0,06

Niob	MUC / ANS AUG BID EIN GRA KUL MOE SCY WBB										0,045	0,094	0,119	0,114				0,310	0,256	0,234	0,239
	BID EIN GRA KUL MOE SCY										-,		-, -	/				.,		-, -	
	EIN GRA KUL MOE SCY										0,022	0,066	0,078	0,075	0,041	0,062	0,073	0,064	0,070	0,067	0,057
	GRA KUL MOE SCY										0,008	0,045	0,066	0,063	0,027	0,042	0,036	0,033	0,045	0,037	0,048
	KUL MOE SCY										0,011	0,043	0,058	0,049	0,023	0,044	0,036	0,039	0,061	0,044	0,051
	MOE SCY										0,013	0,045	0,073	0,063	0,036	0,051	0,046	0,049	0,043	0,045	0,056
	SCY										0,015	0,063	0,079	0,072	0,041	0,062	0,060	0,067	0,084	0,058	0,065
											0,014	0,043	0,069	0,053	0,031	0,043	0,046	0,050	0,072	0,055	0,053
	WBB													·							
											0,017	0,045	0,079	0,062	0,031	0,045	0,047	0,054	0,053	0,055	0,065
	wss																				
	MW Land										0,013	0,047	0,070	0,061	0,031	0,048	0,045	0,049	0,060	0,049	0,056
	Stabw										0,003	0,008	0,008	0,008	0,006	0,008	0,009	0,012	0,016	0,008	0,007
Thallium	MUC / ANS	0,012	0,011	0,011	0,009	0,008	0,008	0,006	0,024	0,025	0,025	0,025	0,025	0,025				0,033	0,033	0,037	0,034
	AUG	0,016	0,010	0,010	0,008	0,007	0,006	0,005	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025
	BID	0,011	0,011	0,008	0,007	0,006	0,004	0,005	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025
	EIN	0,012	0,010	0,010	0,007	0,010	0,006	0,009	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,028
	GRA	0,014	0,012	0,011	0,007	0,006	0,006	0,004	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025
	KUL		0,011	0,009	0,007	0,009	0,006	0,006	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025
	MOE								0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,048	0,025
	SCY	0,012	0,010	0,009	0,009	0,009	0,006	0,006													
	WBB	0,024	0,014	0,011	0,008	0,011	0,008	0,007	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025
	WSS	0,015																			
	MW Land	0,015	0,011	0,010	0,008	0,009	0,006	0,006	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,029	0,026
	Stabw	0,005	0,001	0,001	0,001	0,002	0,001	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,009	0,000
Vanadium	MUC / ANS	1,15	1,06	1,24	0,95	0,86	0,94	0,82	1,36	0,68	0,57	0,94	0,99	1,07				2,34	1,99	1,79	1,87
	AUG	0,94	0,75	0,94	0,60	0,56	0,56	0,45	0,55	0,50	0,29	0,64	0,83	0,83	0,60	0,85	0,79	0,73	0,90	0,83	0,68
	BID	0,72	0,53	0,67	0,49	0,45	0,42	0,40	0,41	0,55	0,19	0,53	0,45	0,84	0,56	0,71	0,53	0,53	0,74	0,73	0,68
	EIN	1,04	0,74	1,02	0,56	0,46	0,57	0,58	0,45	0,41	0,21	0,50	0,58	0,69	0,43	0,73	0,47	0,58	0,89	0,72	0,67
	GRA	0,90	0,62	0,91	0,52	0,45	0,39	0,45	0,41	0,60	0,25	0,60	0,74	0,46	0,77	0,85	0,69	0,81	0,65	0,77	0,81
	KUL		0,69	0,68	0,63	0,55	0,53	0,57	0,49	0,37	0,22	0,57	0,55	0,76	0,57	0,64	0,58	0,82	0,94	0,63	0,75
	MOE								0,53	0,46	0,23	0,46	0,54	0,70	0,37	0,49	0,49	0,55	0,72	0,69	0,60
	SCY	0,79	0,63	0,65	0,58	0,55	0,41	0,45													
	WBB	1,07	0,79	0,65	0,54	0,64	0,57	0,61	0,54	0,42	0,31	0,44	0,60	0,85	0,60	0,56	0,42	0,68	0,69	0,71	0,72
	MW Land	1,01																			
	Stabw	0,92	0,66	0,76	0,55	0,52	0,48	0,51	0,47	0,47	0,23	0,52	0,58	0,72	0,55	0,66	0,53	0,66	0,77	0,71	0,70
Zink	MUC / ANS	0,14 52,5	0,09 56,2	0,16 63,0	0,05 49,7	0,08 43,9	0,09 36,1	0,09 40,9	0,06 50,1	0,09 27,1	0,04 20,0	0,06 30,1	0,10 30,7	0,14 27,4	0,14	0,13	0,10	0,13 68,1	0,12 95,8	0,05 95,2	0,07 86,1
	AUG	36,7	44,5	42,7	36,8	34,7	31,5	25,9	31,2	14,4	9,9	12,7	12,5	21,2	14,9	19,0	15,3	15,1	18,4	19,4	14,8
	BID	25,8	31,2	31,3	22,5	37,8	20,2	25,1	23,7	8,9	7,5	9,0	10,4	9,6	8,6	4,6	8,7	6,2	8,3	8,9	7,5
	EIN	31,5	31,8	32,0	23,4	26,7	23,7	26,0	25,9	9,2	7,5	9,0	14,8	13,6	6,1	9,0	5,9	6,4	8,4	7,7	9,7
	GRA	26,6	36,6	35,4	27,4	30,8	25,1	20,8	19,5	9,3	6,9	9,0	13,1	14,0	10,7	9,1	11,1	12,6	9,7	9,6	9,0
	KUL	20,0	29,2	28,0	30,9	33,7	17,5	18,5	24,4	13,9	7,5	10,8	12,7	15,6	8,0	9,2	9,1	10,5	10,5		9,6
	MOE		- /-	-7-	,-	7-	,-	-,-	24,4	8,3	6,9	9,4	14,0	11,8	8,6	7,0	5,9	6,7	7,5	8,3	7,6
	SCY	25,3	37,1	31,4	24,9	35,3	27,1	19,2	, .	-,-	-,-		,-	,-	-,.		-,-	-,	-	-,-	
	WBB	21,0	32,7	38,4	24,0	32,6	16,4	19,6	22,0	12,8	7,5	8,8	13,4	14,2	9,0	9,8	9,2	9,1	9,4	9,3	9,3
	WSS	30,2																			
	MW Land	26,7	33,1	32,8	25,5	32,8	21,7	21,5	23,3	10,4	7,3	9,3	13,1	13,1	8,5	8,1	8,3	8,6	9,0	8,9	8,8
	Stabw	3,8	3,2	3,6	3,1	3,8	4,3	3,2	2,3	2,3	0,3	0,7	1,5	2,1	1,5	2,0	2,1	2,6	1,1	0,7	1,0
Zinn	MUC / ANS			0,71	0,63	0,82	1,20	1,38	1,42	1,20	1,22	2,33	2,42	2,67				5,14	7,40	5,99	5,72
	AUG			0,33	0,25	0,24	0,36	0,46	0,47	0,48	0,45	0,74	0,80	0,93	0,76	1,02	1,07	1,03	0,98	1,00	0,81
	BID			0,29	0,25	0,23	0,19	0,22	0,21	0,17	0,24	0,27	0,34	0,50	0,36	0,46	0,43	0,37	0,48	0,42	0,33
	EIN			0,29	0,25	0,23	0,18	0,24	0,19	0,18	0,17	0,29	0,33	0,37	0,25	0,33	0,33	0,33	0,44	0,38	0,32
	GRA			0,29	0,25	0,23	0,23	0,31	0,28	0,23	0,28	0,50	0,59	0,65	0,63	0,81	0,84	0,63	0,67	0,65	0,61
	KUL			0,30	0,25	0,23	0,16	0,21	0,21	0,21	0,18	0,31	0,34	0,40	0,33	0,37	0,43	0,43	0,44	0,36	0,33
	MOE								0,29	0,22	0,23	0,32	0,37	0,46	0,35	0,35	0,36	0,44	0,41	0,46	0,38
	SCY			0,29	0,25	0,23	0,18	0,19													
	WBB			0,30	0,25	0,23	0,24	0,27	0,32	0,24	0,32	0,35	0,52	0,49	0,37	0,39	0,44	0,55	0,44	0,47	0,38
	WSS																				<u> </u>
	MW Land			0,29	0,25	0,23	0,20	0,24	0,25	0,21	0,24	0,34	0,42	0,48	0,38	0,45	0,47	0,46	0,48	0,46	0,39
	Stabw			0,01	0,00	0,00	0,03	0,03	0,06	0,03	0,06	0,03	0,08	0,06	0,05	0,05	0,05	0,08	0,02	0,05	0,11

	DBS	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Staubniederschlag	MUC / ANS	109	95	91	95	67	74	65	55	49	37	41	46	82				131	152	149	102
[mg/m²d]	AUG	56	47	53	44	50	44	38	48	47	25	33	33	40	38	47	50	39	86	68	43
	BID	19	23	31	23	26	24	16	15	22	13	21	14	27	35	13	22	18	26	39	25
	EIN	25	26	35	28	35	27	32	21	13	14	16	20	35	21	48	26	22	37	31	41
	GRA	24	25	38	31	32	37	20	24	22	14	23	21	31	39	23	35	32	36	39	31
	KUL		31	37	42	25	41	31	25	24	15	18	27	34	24	28	37	39	43	56	42
	MOE								18	20	13	20	24	24	21	39	26	30	39	40	26
	SCY	33	35	37	56	30	31	26													
	WBB	23	32	28	26	28	28	25	17	21	15	18	21	27	22	19	36	22	36	37	29
	WSS	21																			
	MW Land	24	29	34	34	29	31	25	20	20	14	19	21	30	27	28	30	28	36	40	32
	Stabw	5	5	4	13	4	7	6	4	4	1	2	4	4	8	13	7	8	6	8	7