

Analytik Institut Rietzler GmbH

Besonderheiten bei der Handhabung von Bodenluft-Proben im Auftragslabor

Vorstellung

Referent

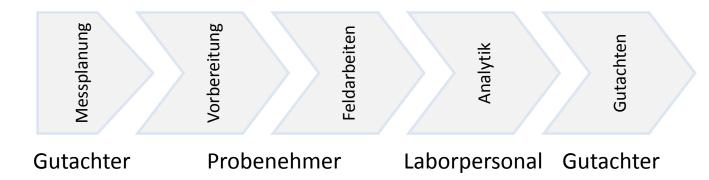
Arthur Hofmann

- Dipl.-Ing. (FH) techn. Chemie
- Geschäftsführer
- Seit 1990 in der Branche
- Analytik GC/HPLC
- Laborleiter seit 1992
- Privater Sachverständiger in der Wasserwirtschaft
- Lehrbeauftragter Ohm Hochschule Nürnberg

1. Arten von Bodenluftgefäßen

Gassammelverfahren Anreicherungsverfahren

2. Der analytische Prozess


Gaschromatographie Direktaufgabe

Desorption und Flüssigaufgabe

- 3. Kenngrößen
- 4. Qualitätsmanagement
- 5. Wichtige Informationen Probenahme/Labor

These Qualität in der Bodenluftuntersuchung

These: Je mehr die Beteiligten von einander wissen, desto geringer ist die Fehlerquote!

"Das Geheimnis des Erfolges ist, den Standpunkt des Anderen zu verstehen." Henry Ford

Arten von analytischen Bodenluftverfahren

Verfahren	VDI 3865 Bl. 3 Anreicherung 06/1998	VDI 3865 Bl. 4 Direkt- verfahren 12/2000	LfU 3.8.4 03/2003	Verbreitung (Anzahl Ringversuchs- Teilnehmer)			
Anreicherungsv	verfahren						
Aktivkohle	x			23			
XAD 4	X						
Direktverfahrer	Direktverfahren						
Headspace		X		10			
Minican			x	2			
Gasmaus				1			
Gasbeutel				5			
Glaspipette		Х		2			

Arten von Bodenluftgefäßen - Anreicherungsverfahren

Aktivkohle

Volumen 1 bis 5 Liter Befüllung über Schlauch

Feldblindprobe notwendig

Problem der Überladung

Lagerdauer 5 Tage

Arten von Bodenluftgefäßen - Anreicherungsverfahren

XAD 4 - Harz

Volumen 1 bis 5 Liter Befüllung über Schlauch

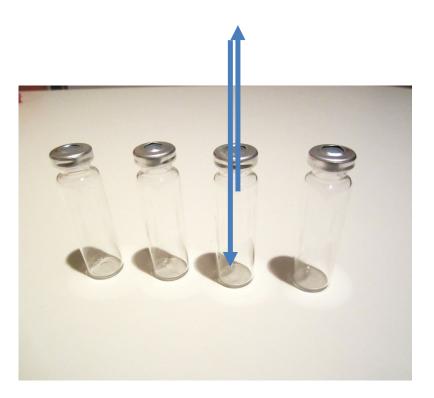
Feldblindprobe notwendig

Problem der Überladung

Lagerdauer 1 Woche

Headspaceglas

mit PTFE beschichtetem Butylkautschuk


Volumen 0,002 bis 0,02 Liter Befüllung über Spritze Vor Ort evakuiert oder Mit dem fünffachen Volumen beladen

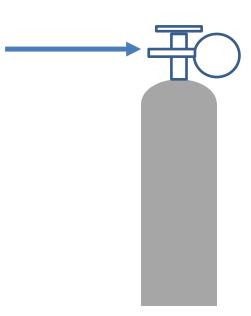
Einmalprodukt: Kontaminationsfrei

Dichtheitsprüfung notwendig

Geringe Lagerungsdauer: 1 Tag

Kein Feldblindwert

Arten von Bodenluftgefäßen - Gassammelverfahren


Minican

Volumen 1 Liter

Evakuierung

Luftaustausch über Durchfluss

Lagerungsdauer 5 Tage

Gasbeutel Tedlar

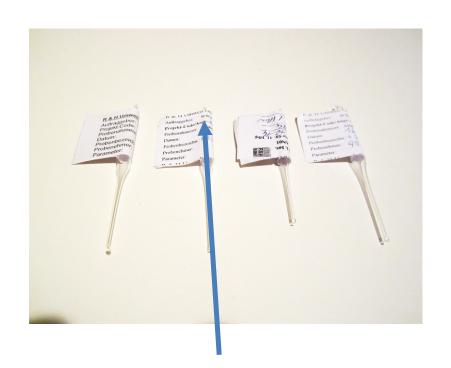
adsorptionsfrei!

Volumen 0,25 Liter bis 2,5 Liter Befüllung über Schlauch

Mehrfachentnahme

Einmalprodukt keine Kontamination

Geringe Lagerungsdauer

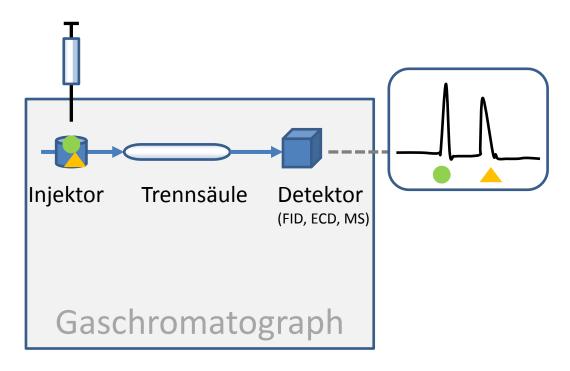

Glaspipette

Volumen 0,001 Liter Befüllung über Spritze Kanüle

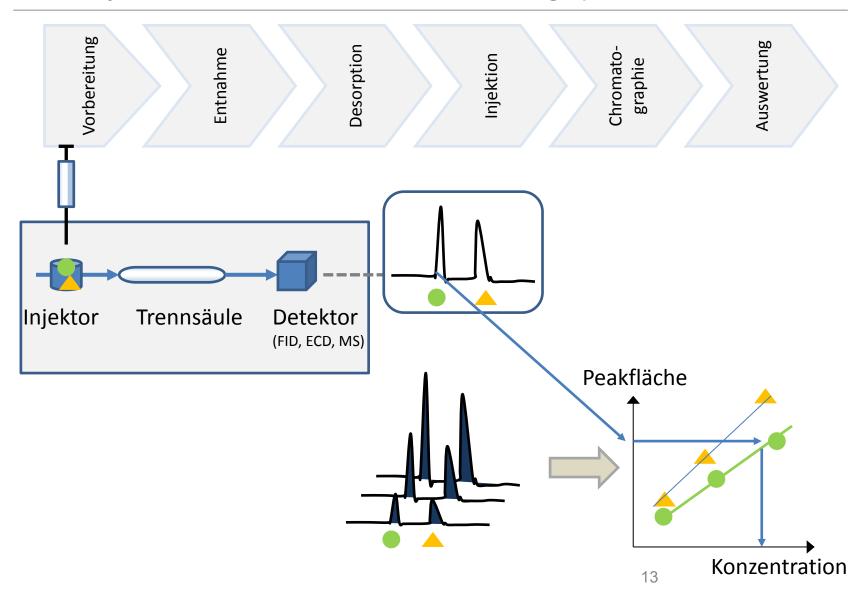
Handwerkliches Geschick nötig

Nur eine Entnahme im Labor

Extreme Langzeitstabilität



Der analytische Prozess I Crashkus Gaschromatographie I


Vorbereitung
Entnahme
Desorption
Injektion
graphie

Der analytische Prozess I Crashkus Gaschromatographie

Der Analytische Prozess I

Vorbereitung

Entnahme

Desorption

Injektion

Chromatographie

Auswertung

Anreicherungsverfahren

Aktivkohle/XAD stellen Gerät kalibrieren

Adsorbens entnehmen

Desorbieren/Extrahieren mit (2 ml CS2 / Pentan

In der Regel 1-10 μl Extrakt

Chromatogramm aufzeichnen, Auswerten

Validierung und laufende interne und externe QM

Direktverfahren

Gefäße zur Verfügung stellen Evakuieren, Gerät kalibrieren

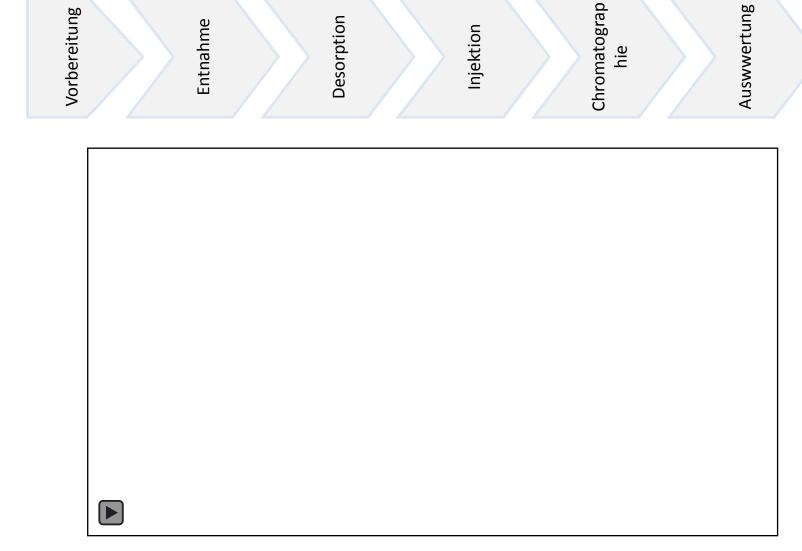
Mit Spritze aus Behälter entnehmen

Entfällt

In der Regel 250 µl

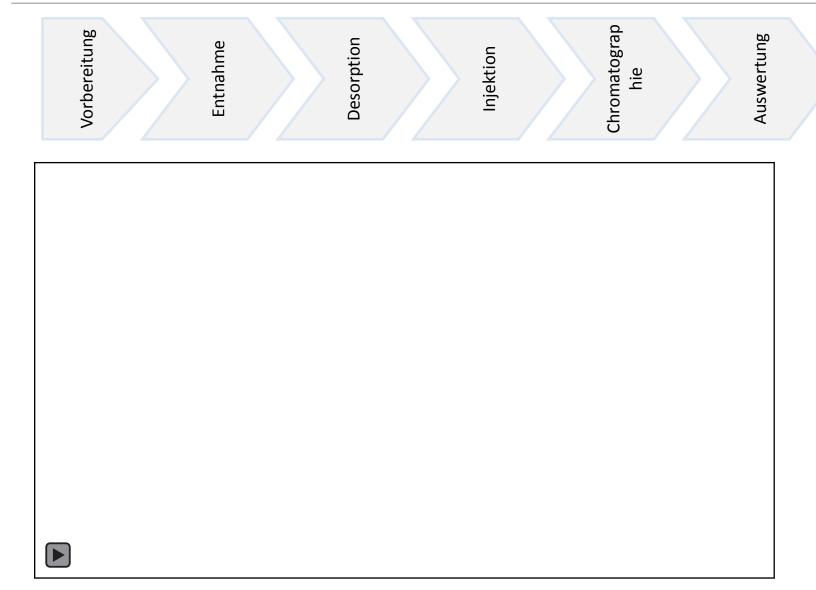
Chromatogramm aufzeichnen, Auswerten

Validierung und laufende interne und externe QM



Der Analytische Prozess I Direktverfahren

Der Analytische Prozess I Direktverfahren Injektion



Der Analytische Prozess II Anreicherungsverfahren

Der Analytische Prozess II Anreicherungsverfahren

Methode	Volumen Probeluft ml	Extraktions- volumen ml	Injektions- Volumen ml	Aufgabever- hältnis			
Anreicherungsverfahren							
Aktivkohle	1000	2	0,001	1/2000			
XAD 4	1000	2	0,001	1/2000			
Gassammelverfahren							
Headspace	2-20	-	0,250	1/8-1/80			
Minican	1000	-	0,250	1/4000			
Gasmaus	200-1000	-	0,250	1/800-1/4000			
Gasbeutel	1000	-	0,250	1/4000			
Glaspipette	2	-	0,250	1/8			

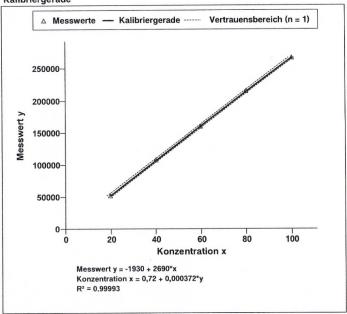
								Methode	/DIN 32645	Prüfmittel	Einheit	CONTRACT OF THE PARTY OF THE PA
Parameter Toluol		VDI 3865 BI. 4*		GC-FID2	mg/m³							
na	lveener	nahniss	e der Ka	librieru	na						Bemerkung	
	Jochier	geninee	0 001 110					11/15 (4)	1) (D (0)			
i	x(BW)	x(i)	y(i,1)	y(i,2)	y(i,3)	y(i,4)	y(i,5)	±VB (n=1)	±VB (n=3)			
i 1	x(BW) 0.01	x(i)	y(i,1) 51275	y(i,2) 50903	y(i,3) 49553	y(i,4) 49882	y(1,5) 51406	1,23	0,939			
i 1 2	0,01			-								
i 1 2 3	0,01	20	51275	-				1,23	0,939			
i 1 2 3 4	0,01	20 40	51275 106426	-				1,23 1,10	0,939 0,770			

Prüfung der Varianzhomogenität

f(1)	s(1)2	f(2)	s(2) ²	PW	F(4,4,99%)
5	702000	5	17600000	25,00	15,98

Ergebnis: PW > F(4,4,99%) => Die Varianzen sind nicht homogen.

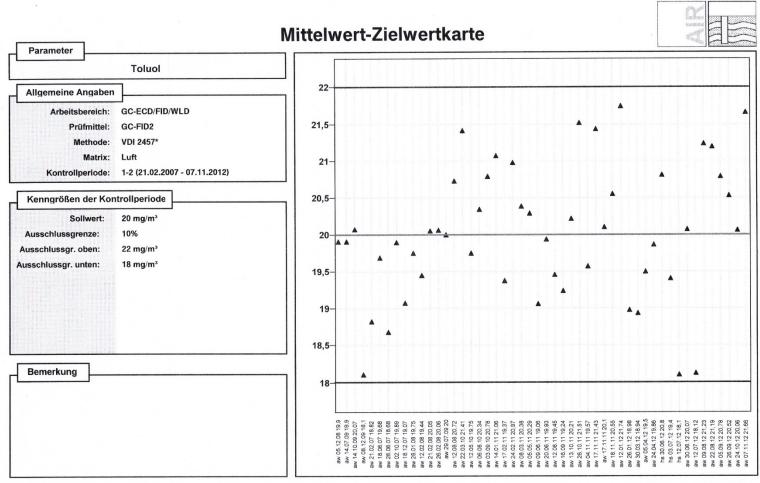
Linearitätstest


s(y1) ²	s(y2)2	DS ²	PW	F(1,2,99%)
671000	718000	578000	0,8054	98,50

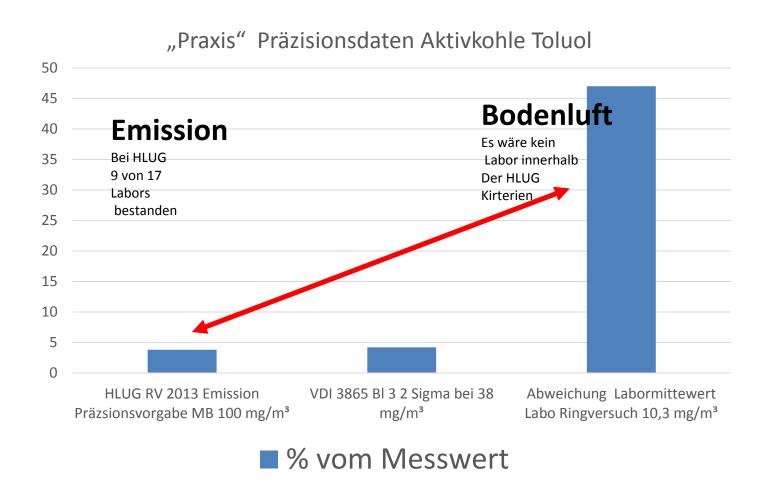
Ergebnis: PW < F(1,2,99%) => Die Kalibrierfunktion ist linear.

Verfahrenskenndaten

Arbeitsbereich	mg/m³	20 - 100
Anzahl der Standardproben N		5
Statistische Kenngrößen		P=95% 1/k=33,3% t(1s)=2,353 t(2s)=3,182
Ordinatenabschnitt (Blindwert) a		-1930
Empfindlichkeit (Steigung) b/ E (nicht linear)	/mg/m³	2690
Funktionskonstante c (nicht linear)	/(mg/m³)	-
Reststandardabweichung s(y)		819
Verfahrensstandardabweichung s(x0)	mg/m³	0,305
Verfahrensvariationskoeffizient V(x0)	%	0,508
Nachweisgrenze NWG	mg/m³	1,04 (KAL), 0,0605 (BW)
Erfassungsgrenze EG	mg/m³	2,08 (KAL), 0,119 (BW)
Bestimmungsgrenze BG	mg/m³	4,09 (KAL), 0,178 (BW)
Arbeitsbestimmungsgrenze ABG	mg/m³	1
Prüfwert x(p) bei linearer Funktion	mg/m³	2,06

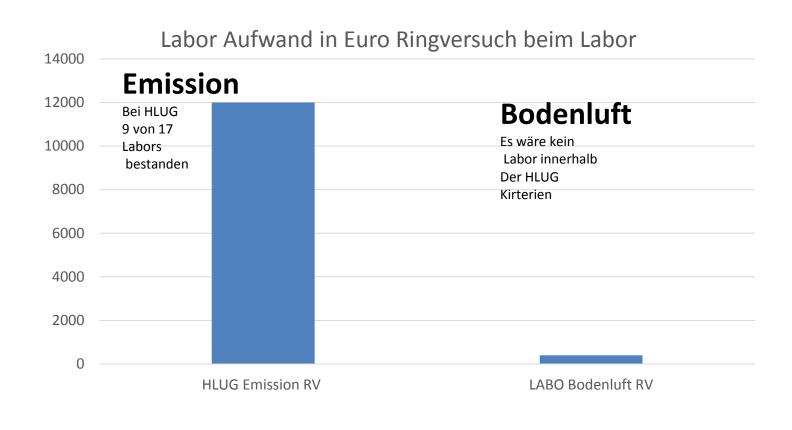

Kalibriergerade

21.1.2013



Datum: 08.11.2012

geprüft:



Was können wir verbessern – Was ist in der Bodenluft zu erreichen?

Aufwand Messungen und Ringversuch

Wo liegt der Unterschied?

- Abstimmung aller Beteiligten (Messteam Laborteam)
 Schulung oder eigene Probenehmer (Emission und Innenraummessung)
- 2. Optimierung des Beladungsbereichs (Volumen*Konzentration) auf den Messbereich
- Optimierte Einzelschrittbetrachtung (Kennlinien einrechnen von Volumen-, Druck-, Feuchtemesser, BW der Röhrchencharge, Desorptionsausbeute, Einberechnen der Kennlinien)
- 4. Routinevorgänge vor Ort
- -> Ein Halbstundenmittelwert in der Emissionsmessung ist drei bis

10mal teurer als eine Messung der Bodenluft mit Aktivkohle

Kritische Stellen Anreicherungsverfahren

- 1. Aktivkohle ist grundsätzlich tauglich für die Bodenluftprobenahme
- 2. Der Aufwand muss für gute Ergebnisse aber deutlich erhöht werden
 - Abstimmung Probenahme Labor (direkt nicht über Probeneingang)
 - Standardisierung Lösungsmittel (CS2 ggf. mit Modifier)
 - Immer Bestimmung Blindwert aktuelle Charge
 - Immer Bestimmung Feldblindwert (Arbeitsweise und Transport)
 - Immer Bestimmung Desorptionsausbeute
- 3. Aus Kostengründen sollte in der Bodenluft nur mit den einfachen Direktverfahren gearbeitet werden. Aber auch hier sind Fallstricke zu beachten:

Kritsche Punkte – Direktverfahren 1

1. Headspacegläser

- Material Septen!
- 2. Zeitliche Abstimmung sehr problematisch 1 Arbeitstag Haltbarkeit!! Immer Abends Proben im Labor haben aber ohne starke Temperturschwankungen (-> kein Transportdienst!!)
- 3. Undichtigkeiten nach Transport (Erschütterung)
- 4. Mindestens immer zwei Gläser Parallel untersuchen

2. Gassack und Gasmas

- 1. Adsorption Materialauswahl (Kalibrierung gilt nur für den Gassacktyp)
- 2. Temperatur
- 3. Material auch bei Befüllschlauch etc. wichtig!

3. Minican

- 1. Adsorption und Vakuum wichtig.
- 2. Temperatur
- 3. Material auch bei Befüllschlauch etc. wichtig!

Empfehlung

4. Pasteurpipette

1. Handling vor Ort muss beherrscht werden (Komplett abgeschmolzene Spitze verhindert Aufbrechen im Labor)

Kritische Punkte – Direktverfahren 2

Generelle Empfehlungen

- -> Empfehlung Bodenluft mit Direktverfahren
- -> Enge Abstimmung Labor/Probenehmer
- -> Fehlerbetrachtung über alle Schritte analog LAI-Emissionsbericht in Berichtstellung einarbeiten

Analytik Institut Rietzler GmbH

Schluss

"Das Geheimnis des Erfolges ist, den Standpunkt des Anderen zu verstehen." Henry Ford

Vielen Dank für Ihre Aufmerksamkeit.